PIERRE CARBONNELLE, JOOST VENNEKENS, MARC DENECKER, BART BOGAERTS
{"title":"可观察环境中的交互模型扩展","authors":"PIERRE CARBONNELLE, JOOST VENNEKENS, MARC DENECKER, BART BOGAERTS","doi":"10.1017/s1471068423000261","DOIUrl":null,"url":null,"abstract":"Abstract Many practical problems can be understood as the search for a state of affairs that extends a fixed partial state of affairs, the environment , while satisfying certain conditions that are formally specified. Such problems are found in, for example, engineering, law or economics. We study this class of problems in a context where some of the relevant information about the environment is not known by the user at the start of the search. During the search, the user may consider tentative solutions that make implicit hypotheses about these unknowns. To ensure that the solution is appropriate, these hypotheses must be verified by observing the environment. Furthermore, we assume that, in addition to knowledge of what constitutes a solution, knowledge of general laws of the environment is also present. We formally define partial solutions with enough verified facts to guarantee the existence of complete and appropriate solutions. Additionally, we propose an interactive system to assist the user in their search by determining (1) which hypotheses implicit in a tentative solution must be verified in the environment, and (2) which observations can bring useful information for the search. We present an efficient method to over-approximate the set of relevant information, and evaluate our implementation.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"138 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Model Expansion in an Observable Environment\",\"authors\":\"PIERRE CARBONNELLE, JOOST VENNEKENS, MARC DENECKER, BART BOGAERTS\",\"doi\":\"10.1017/s1471068423000261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many practical problems can be understood as the search for a state of affairs that extends a fixed partial state of affairs, the environment , while satisfying certain conditions that are formally specified. Such problems are found in, for example, engineering, law or economics. We study this class of problems in a context where some of the relevant information about the environment is not known by the user at the start of the search. During the search, the user may consider tentative solutions that make implicit hypotheses about these unknowns. To ensure that the solution is appropriate, these hypotheses must be verified by observing the environment. Furthermore, we assume that, in addition to knowledge of what constitutes a solution, knowledge of general laws of the environment is also present. We formally define partial solutions with enough verified facts to guarantee the existence of complete and appropriate solutions. Additionally, we propose an interactive system to assist the user in their search by determining (1) which hypotheses implicit in a tentative solution must be verified in the environment, and (2) which observations can bring useful information for the search. We present an efficient method to over-approximate the set of relevant information, and evaluate our implementation.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1471068423000261\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1471068423000261","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Interactive Model Expansion in an Observable Environment
Abstract Many practical problems can be understood as the search for a state of affairs that extends a fixed partial state of affairs, the environment , while satisfying certain conditions that are formally specified. Such problems are found in, for example, engineering, law or economics. We study this class of problems in a context where some of the relevant information about the environment is not known by the user at the start of the search. During the search, the user may consider tentative solutions that make implicit hypotheses about these unknowns. To ensure that the solution is appropriate, these hypotheses must be verified by observing the environment. Furthermore, we assume that, in addition to knowledge of what constitutes a solution, knowledge of general laws of the environment is also present. We formally define partial solutions with enough verified facts to guarantee the existence of complete and appropriate solutions. Additionally, we propose an interactive system to assist the user in their search by determining (1) which hypotheses implicit in a tentative solution must be verified in the environment, and (2) which observations can bring useful information for the search. We present an efficient method to over-approximate the set of relevant information, and evaluate our implementation.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.