{"title":"伤寒和疟疾扩展医疗诊断系统的开发","authors":"Temitope Apanisile, Joshua Ayobami Ayeni","doi":"10.30564/aia.v5i1.5505","DOIUrl":null,"url":null,"abstract":"In developing countries like Nigeria, malaria and typhoid fever are major health challenges in society today. The symptoms vary and can lead to other illnesses in the body which include prolonged fever, fatigue, nausea, headaches, and the risk of contracting infection occurring concurrently if not properly diagnosed and treated. There is a strong need for cost-effective technologies to manage disease processes and reduce morbidity and mortality in developing countries. Some of the challenging issues confronting healthcare are lack of proper processing of data and delay in the dissemination of health information, which often causes delays in the provision of results and poor quality of service delivery. This paper addressed the weaknesses of the existing system through the development of an Artificial Intelligence (AI) driven extended diagnostic system (EDS). The dataset was obtained from patients’ historical records from the Lagos University Teaching Hospital (LUTH) and contained two-hundred and fifty (250) records with five (5) attributes such as risk level, gender, symptom 1, symptom 2, and ailment type. The malaria and typhoid dataset was pre-processed and cleansed to remove unwanted data and information. The EDS was developed using the Naive Bayes technique and implemented using software development tools. The performance of the system was evaluated using the following known metrics: accuracies of true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The performance of the EDS was substantially significant for both malaria and typhoid fevers.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":"1 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Extended Medical Diagnostic System for Typhoid and Malaria Fever\",\"authors\":\"Temitope Apanisile, Joshua Ayobami Ayeni\",\"doi\":\"10.30564/aia.v5i1.5505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In developing countries like Nigeria, malaria and typhoid fever are major health challenges in society today. The symptoms vary and can lead to other illnesses in the body which include prolonged fever, fatigue, nausea, headaches, and the risk of contracting infection occurring concurrently if not properly diagnosed and treated. There is a strong need for cost-effective technologies to manage disease processes and reduce morbidity and mortality in developing countries. Some of the challenging issues confronting healthcare are lack of proper processing of data and delay in the dissemination of health information, which often causes delays in the provision of results and poor quality of service delivery. This paper addressed the weaknesses of the existing system through the development of an Artificial Intelligence (AI) driven extended diagnostic system (EDS). The dataset was obtained from patients’ historical records from the Lagos University Teaching Hospital (LUTH) and contained two-hundred and fifty (250) records with five (5) attributes such as risk level, gender, symptom 1, symptom 2, and ailment type. The malaria and typhoid dataset was pre-processed and cleansed to remove unwanted data and information. The EDS was developed using the Naive Bayes technique and implemented using software development tools. The performance of the system was evaluated using the following known metrics: accuracies of true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The performance of the EDS was substantially significant for both malaria and typhoid fevers.\",\"PeriodicalId\":42597,\"journal\":{\"name\":\"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/aia.v5i1.5505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/aia.v5i1.5505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Development of an Extended Medical Diagnostic System for Typhoid and Malaria Fever
In developing countries like Nigeria, malaria and typhoid fever are major health challenges in society today. The symptoms vary and can lead to other illnesses in the body which include prolonged fever, fatigue, nausea, headaches, and the risk of contracting infection occurring concurrently if not properly diagnosed and treated. There is a strong need for cost-effective technologies to manage disease processes and reduce morbidity and mortality in developing countries. Some of the challenging issues confronting healthcare are lack of proper processing of data and delay in the dissemination of health information, which often causes delays in the provision of results and poor quality of service delivery. This paper addressed the weaknesses of the existing system through the development of an Artificial Intelligence (AI) driven extended diagnostic system (EDS). The dataset was obtained from patients’ historical records from the Lagos University Teaching Hospital (LUTH) and contained two-hundred and fifty (250) records with five (5) attributes such as risk level, gender, symptom 1, symptom 2, and ailment type. The malaria and typhoid dataset was pre-processed and cleansed to remove unwanted data and information. The EDS was developed using the Naive Bayes technique and implemented using software development tools. The performance of the system was evaluated using the following known metrics: accuracies of true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The performance of the EDS was substantially significant for both malaria and typhoid fevers.