{"title":"有机过氧化物对中等分子量均相聚丙烯断裂的影响及作用机理","authors":"M. Abd El-Wahab, M.G. El-Desouky","doi":"10.3233/mgc-230024","DOIUrl":null,"url":null,"abstract":"In this study, we show that organic peroxide is a useful tool for breaking the viscosity or chain of polypropylene during melt processing to provide a regulated rheology product. Reactive extrusion is used to crosslink peroxide and combine it with polypropylene (PP). To achieve end-use applications with performance targets, stabilizers are required to preserve the polymer’s initial strength, flexibility, and toughness properties. Other additives are added to PP in addition to stabilization in order to enhance or change certain of its properties. With the addition of varying levels of organic peroxide [2,5-Dimethyl-2,5-di (tert-butyl peroxy) hexane]. The use of peroxide in the manufacturing process of polypropylene is a method of breaking in the polymer chains, which can affect its properties, including its MFI. It is possible that increasing the amount of peroxide used leads to a higher degree of branching or cross-linking, which in turn leads to a higher MFI value. However, it is important to note that the relationship between the amount of peroxide used and the resulting MFI values may not be linear and may depend on other factors as well. In addition to the MFI, other properties of the polypropylene were also measured, including shear and melt flow index, melting and crystallization temperatures, flexural and tensile moduli, and yield stress. These properties are important for understanding the mechanical and thermal behavior of the polymer and can be used to optimize its performance for specific applications.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of organic peroxide on a moderate molecular weight homo-polypropylene vis breaking, and mechanism of interaction\",\"authors\":\"M. Abd El-Wahab, M.G. El-Desouky\",\"doi\":\"10.3233/mgc-230024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we show that organic peroxide is a useful tool for breaking the viscosity or chain of polypropylene during melt processing to provide a regulated rheology product. Reactive extrusion is used to crosslink peroxide and combine it with polypropylene (PP). To achieve end-use applications with performance targets, stabilizers are required to preserve the polymer’s initial strength, flexibility, and toughness properties. Other additives are added to PP in addition to stabilization in order to enhance or change certain of its properties. With the addition of varying levels of organic peroxide [2,5-Dimethyl-2,5-di (tert-butyl peroxy) hexane]. The use of peroxide in the manufacturing process of polypropylene is a method of breaking in the polymer chains, which can affect its properties, including its MFI. It is possible that increasing the amount of peroxide used leads to a higher degree of branching or cross-linking, which in turn leads to a higher MFI value. However, it is important to note that the relationship between the amount of peroxide used and the resulting MFI values may not be linear and may depend on other factors as well. In addition to the MFI, other properties of the polypropylene were also measured, including shear and melt flow index, melting and crystallization temperatures, flexural and tensile moduli, and yield stress. These properties are important for understanding the mechanical and thermal behavior of the polymer and can be used to optimize its performance for specific applications.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-230024\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgc-230024","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of organic peroxide on a moderate molecular weight homo-polypropylene vis breaking, and mechanism of interaction
In this study, we show that organic peroxide is a useful tool for breaking the viscosity or chain of polypropylene during melt processing to provide a regulated rheology product. Reactive extrusion is used to crosslink peroxide and combine it with polypropylene (PP). To achieve end-use applications with performance targets, stabilizers are required to preserve the polymer’s initial strength, flexibility, and toughness properties. Other additives are added to PP in addition to stabilization in order to enhance or change certain of its properties. With the addition of varying levels of organic peroxide [2,5-Dimethyl-2,5-di (tert-butyl peroxy) hexane]. The use of peroxide in the manufacturing process of polypropylene is a method of breaking in the polymer chains, which can affect its properties, including its MFI. It is possible that increasing the amount of peroxide used leads to a higher degree of branching or cross-linking, which in turn leads to a higher MFI value. However, it is important to note that the relationship between the amount of peroxide used and the resulting MFI values may not be linear and may depend on other factors as well. In addition to the MFI, other properties of the polypropylene were also measured, including shear and melt flow index, melting and crystallization temperatures, flexural and tensile moduli, and yield stress. These properties are important for understanding the mechanical and thermal behavior of the polymer and can be used to optimize its performance for specific applications.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.