Abbeah Mae Navasca, Sandesh Dangi, Suzette Arcibal Baldwin, Zhao Jin, Thomas Baldwin
{"title":"Taq-man多重qPCR高通量定量测定大麦穗部和籽粒镰刀菌生物量的建立与验证","authors":"Abbeah Mae Navasca, Sandesh Dangi, Suzette Arcibal Baldwin, Zhao Jin, Thomas Baldwin","doi":"10.1094/php-07-23-0065-rs","DOIUrl":null,"url":null,"abstract":"Fusarium Head Blight (FHB) is a devastating disease commonly affecting North American small grains, primarily caused by Fusarium graminearum. Although the disease causes visible symptoms, the more pressing concern is the contamination of grain with trichothecene toxins, especially deoxynivalenol (DON), which can cause toxicity in humans and animals by inhibiting protein biosynthesis. The DON levels are more critical when breeding for resistance, but it does not account for pathogen infection and disease severity. To link DON and Fusarium infection, we optimized and validated a real-time multiplex quantitative PCR (qPCR) protocol for high-throughput quantification of Fusarium biomass based on the Tri5 gene, which encodes trichodiene synthase, the first enzyme involved in trichothecene toxin production. The primers and probes were designed to measure the abundance of Tri5 and normalized to the barley actin gene. The assay is repeatable, robust, and sensitive, up to 0.003 ng/ul of F. graminearum and 0.3 ng/ul of barley DNA. The method is cost-effective and has the potential to quantify Fusarium biomass, monitor disease progression, and determine DON levels in barley spikes and harvested grains.","PeriodicalId":20251,"journal":{"name":"Plant Health Progress","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Taq-man Multiplex qPCR Assay for High-Throughput Quantification of <i>Fusarium graminearum</i> Biomass in Barley Spikes and Grains\",\"authors\":\"Abbeah Mae Navasca, Sandesh Dangi, Suzette Arcibal Baldwin, Zhao Jin, Thomas Baldwin\",\"doi\":\"10.1094/php-07-23-0065-rs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusarium Head Blight (FHB) is a devastating disease commonly affecting North American small grains, primarily caused by Fusarium graminearum. Although the disease causes visible symptoms, the more pressing concern is the contamination of grain with trichothecene toxins, especially deoxynivalenol (DON), which can cause toxicity in humans and animals by inhibiting protein biosynthesis. The DON levels are more critical when breeding for resistance, but it does not account for pathogen infection and disease severity. To link DON and Fusarium infection, we optimized and validated a real-time multiplex quantitative PCR (qPCR) protocol for high-throughput quantification of Fusarium biomass based on the Tri5 gene, which encodes trichodiene synthase, the first enzyme involved in trichothecene toxin production. The primers and probes were designed to measure the abundance of Tri5 and normalized to the barley actin gene. The assay is repeatable, robust, and sensitive, up to 0.003 ng/ul of F. graminearum and 0.3 ng/ul of barley DNA. The method is cost-effective and has the potential to quantify Fusarium biomass, monitor disease progression, and determine DON levels in barley spikes and harvested grains.\",\"PeriodicalId\":20251,\"journal\":{\"name\":\"Plant Health Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Health Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1094/php-07-23-0065-rs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Health Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1094/php-07-23-0065-rs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
赤霉病(Fusarium Head Blight, FHB)是一种通常影响北美小谷物的毁灭性疾病,主要由赤霉病引起。虽然该病引起明显的症状,但更紧迫的问题是粮食受到毛霉菌毒素的污染,特别是脱氧雪腐镰刀菌醇(DON),它可以通过抑制蛋白质的生物合成而对人类和动物造成毒性。DON水平在抗性育种中更为关键,但它不能解释病原体感染和疾病严重程度。为了将DON与镰刀菌感染联系起来,我们优化并验证了一种基于Tri5基因的实时多重定量PCR (qPCR)方案,该方案用于镰刀菌生物量的高通量定量,该基因编码毛霉烯合成酶,这是第一个参与毛霉毒素产生的酶。引物和探针用于测量Tri5的丰度,并归一化为大麦肌动蛋白基因。该方法重复性好,灵敏度高,可检测到0.003 ng/ul的禾谷镰刀菌和0.3 ng/ul的大麦DNA。该方法具有成本效益,有可能量化镰刀菌生物量,监测疾病进展,并确定大麦穗和收获谷物中的DON水平。
Development and Validation of a Taq-man Multiplex qPCR Assay for High-Throughput Quantification of Fusarium graminearum Biomass in Barley Spikes and Grains
Fusarium Head Blight (FHB) is a devastating disease commonly affecting North American small grains, primarily caused by Fusarium graminearum. Although the disease causes visible symptoms, the more pressing concern is the contamination of grain with trichothecene toxins, especially deoxynivalenol (DON), which can cause toxicity in humans and animals by inhibiting protein biosynthesis. The DON levels are more critical when breeding for resistance, but it does not account for pathogen infection and disease severity. To link DON and Fusarium infection, we optimized and validated a real-time multiplex quantitative PCR (qPCR) protocol for high-throughput quantification of Fusarium biomass based on the Tri5 gene, which encodes trichodiene synthase, the first enzyme involved in trichothecene toxin production. The primers and probes were designed to measure the abundance of Tri5 and normalized to the barley actin gene. The assay is repeatable, robust, and sensitive, up to 0.003 ng/ul of F. graminearum and 0.3 ng/ul of barley DNA. The method is cost-effective and has the potential to quantify Fusarium biomass, monitor disease progression, and determine DON levels in barley spikes and harvested grains.
期刊介绍:
Plant Health Progress, a member journal of the Plant Management Network, is a multidisciplinary science-based journal covering all aspects of applied plant health management in agriculture and horticulture. Both peer-reviewed and fully citable, the journal is a credible online-only publication. Plant Health Progress is a not-for-profit collaborative endeavor of the plant health community at large, serving practitioners worldwide. Its primary goal is to provide a comprehensive one-stop Internet resource for plant health information.