Hossein Rajaei, Sasan Amirabdollahian, Cinzia Menapace, Giovanni Straffelini, Stefano Gialanella
{"title":"直接能量沉积法灰口铸铁表面Fe3Al涂层的组织与耐磨性","authors":"Hossein Rajaei, Sasan Amirabdollahian, Cinzia Menapace, Giovanni Straffelini, Stefano Gialanella","doi":"10.3390/lubricants11110477","DOIUrl":null,"url":null,"abstract":"In this study, the potential of Fe3Al coating material as an environmentally friendly alternative to coatings containing critical elements for brake discs was investigated. A buffer layer of Cr–Mo steel (Ferro 55) that was about 500 µm thick was applied on a gray cast iron disc to enhance the coating quality and prevent the formation of hot cracks during solidification. The microstructural analysis of the cross-section of the coating showed that the buffer layer diffused into the Fe3Al coating, forming a combination of Fe3Al, Fe, and Fe3AlC0.5 phases. The tribological properties of the Fe3Al-coated disc were evaluated using pin-on-disc tests against two different copper-free friction materials extracted from commercial brake pads. The wear results show a coefficient of friction comparable to that of an uncoated disc (≈0.55), but with a reduction in particulate matter (PM) emissions, which decreased from 600 to 476 #/cm3. The last issue is an interesting aspect that is gaining increasing importance in view of the upcoming international standards.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"38 S24","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Wear Resistance of Fe3Al Coating on Grey Cast Iron Prepared via Direct Energy Deposition\",\"authors\":\"Hossein Rajaei, Sasan Amirabdollahian, Cinzia Menapace, Giovanni Straffelini, Stefano Gialanella\",\"doi\":\"10.3390/lubricants11110477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the potential of Fe3Al coating material as an environmentally friendly alternative to coatings containing critical elements for brake discs was investigated. A buffer layer of Cr–Mo steel (Ferro 55) that was about 500 µm thick was applied on a gray cast iron disc to enhance the coating quality and prevent the formation of hot cracks during solidification. The microstructural analysis of the cross-section of the coating showed that the buffer layer diffused into the Fe3Al coating, forming a combination of Fe3Al, Fe, and Fe3AlC0.5 phases. The tribological properties of the Fe3Al-coated disc were evaluated using pin-on-disc tests against two different copper-free friction materials extracted from commercial brake pads. The wear results show a coefficient of friction comparable to that of an uncoated disc (≈0.55), but with a reduction in particulate matter (PM) emissions, which decreased from 600 to 476 #/cm3. The last issue is an interesting aspect that is gaining increasing importance in view of the upcoming international standards.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"38 S24\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110477\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Microstructure and Wear Resistance of Fe3Al Coating on Grey Cast Iron Prepared via Direct Energy Deposition
In this study, the potential of Fe3Al coating material as an environmentally friendly alternative to coatings containing critical elements for brake discs was investigated. A buffer layer of Cr–Mo steel (Ferro 55) that was about 500 µm thick was applied on a gray cast iron disc to enhance the coating quality and prevent the formation of hot cracks during solidification. The microstructural analysis of the cross-section of the coating showed that the buffer layer diffused into the Fe3Al coating, forming a combination of Fe3Al, Fe, and Fe3AlC0.5 phases. The tribological properties of the Fe3Al-coated disc were evaluated using pin-on-disc tests against two different copper-free friction materials extracted from commercial brake pads. The wear results show a coefficient of friction comparable to that of an uncoated disc (≈0.55), but with a reduction in particulate matter (PM) emissions, which decreased from 600 to 476 #/cm3. The last issue is an interesting aspect that is gaining increasing importance in view of the upcoming international standards.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding