基于小波变换的射流冲击负压脱氨反应器中流体信号的降噪和特征分析

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Asia-Pacific Journal of Chemical Engineering Pub Date : 2023-11-05 DOI:10.1002/apj.3001
Xiaodie Huang, Xingzong Zhang, Xingjuan Xie, Facheng Qiu
{"title":"基于小波变换的射流冲击负压脱氨反应器中流体信号的降噪和特征分析","authors":"Xiaodie Huang,&nbsp;Xingzong Zhang,&nbsp;Xingjuan Xie,&nbsp;Facheng Qiu","doi":"10.1002/apj.3001","DOIUrl":null,"url":null,"abstract":"<p>The jet impact-negative pressure deamination reactor (JI-NPDR) is a new type of continuous and efficient deamination equipment. The study of the random flow pattern of porous jet impingement in the reactor under negative pressure conditions is an important issue. In this work, the signal processing method based on wavelet transform is used to analyze the characteristics of random flow signals in the reactor. Meanwhile, an analog similar signal is built and three sets of Gaussian white noise with various signal-to-noise ratios are employed via the MATLAB platform. Based on the adjustment of threshold function, threshold, decomposition level and other parameters of wavelet transform, the noise ratio (SNR) and mean squared error (MSE) are used to evaluate the wavelet denoising effect. And then, the optimal denoising scheme for the obtained signal will be applied in processing the vacuum flow signal collected inside the deamination reactor. Subsequently, the 8-layer wavelet decomposition is investigated by using sym7 as the wavelet basis, soft threshold function, and heursure threshold for signal denoising. Then, the analog signal is fed back through the results of the actual signal denoising, and the number of wavelet decomposition layers is adjusted from 8 to 9 layers to optimize the original wavelet denoising combination. By analyzing the low-frequency and high-frequency parts of the signal spectrum before and after denoising, it was found that wavelet transform can effectively denoise the fluid signal in the reactor.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise reduction and characteristic analysis of fluid signal in the jet impact-negative pressure deamination reactor based on wavelet transform\",\"authors\":\"Xiaodie Huang,&nbsp;Xingzong Zhang,&nbsp;Xingjuan Xie,&nbsp;Facheng Qiu\",\"doi\":\"10.1002/apj.3001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The jet impact-negative pressure deamination reactor (JI-NPDR) is a new type of continuous and efficient deamination equipment. The study of the random flow pattern of porous jet impingement in the reactor under negative pressure conditions is an important issue. In this work, the signal processing method based on wavelet transform is used to analyze the characteristics of random flow signals in the reactor. Meanwhile, an analog similar signal is built and three sets of Gaussian white noise with various signal-to-noise ratios are employed via the MATLAB platform. Based on the adjustment of threshold function, threshold, decomposition level and other parameters of wavelet transform, the noise ratio (SNR) and mean squared error (MSE) are used to evaluate the wavelet denoising effect. And then, the optimal denoising scheme for the obtained signal will be applied in processing the vacuum flow signal collected inside the deamination reactor. Subsequently, the 8-layer wavelet decomposition is investigated by using sym7 as the wavelet basis, soft threshold function, and heursure threshold for signal denoising. Then, the analog signal is fed back through the results of the actual signal denoising, and the number of wavelet decomposition layers is adjusted from 8 to 9 layers to optimize the original wavelet denoising combination. By analyzing the low-frequency and high-frequency parts of the signal spectrum before and after denoising, it was found that wavelet transform can effectively denoise the fluid signal in the reactor.</p>\",\"PeriodicalId\":49237,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

射流冲击-负压脱氨反应器(JI-NPDR)是一种新型的连续高效脱氨设备。研究负压条件下反应器内多孔射流冲击的随机流动模式是一个重要课题。本研究采用基于小波变换的信号处理方法来分析反应器中随机流动信号的特征。同时,通过 MATLAB 平台建立模拟相似信号,并采用三组不同信噪比的高斯白噪声。在调整小波变换的阈值函数、阈值、分解电平等参数的基础上,利用噪声比(SNR)和均方误差(MSE)来评价小波去噪效果。然后,将得到的信号最优去噪方案应用于处理脱氨反应器内采集的真空流动信号。随后,研究了 8 层小波分解,使用 sym7 作为小波基、软阈值函数和游标阈值对信号进行去噪。然后,通过实际信号去噪结果反馈模拟信号,并将小波分解层数从 8 层调整为 9 层,以优化原始小波去噪组合。通过分析去噪前后信号频谱的低频和高频部分,发现小波变换可以有效地对反应器中的流体信号进行去噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise reduction and characteristic analysis of fluid signal in the jet impact-negative pressure deamination reactor based on wavelet transform

The jet impact-negative pressure deamination reactor (JI-NPDR) is a new type of continuous and efficient deamination equipment. The study of the random flow pattern of porous jet impingement in the reactor under negative pressure conditions is an important issue. In this work, the signal processing method based on wavelet transform is used to analyze the characteristics of random flow signals in the reactor. Meanwhile, an analog similar signal is built and three sets of Gaussian white noise with various signal-to-noise ratios are employed via the MATLAB platform. Based on the adjustment of threshold function, threshold, decomposition level and other parameters of wavelet transform, the noise ratio (SNR) and mean squared error (MSE) are used to evaluate the wavelet denoising effect. And then, the optimal denoising scheme for the obtained signal will be applied in processing the vacuum flow signal collected inside the deamination reactor. Subsequently, the 8-layer wavelet decomposition is investigated by using sym7 as the wavelet basis, soft threshold function, and heursure threshold for signal denoising. Then, the analog signal is fed back through the results of the actual signal denoising, and the number of wavelet decomposition layers is adjusted from 8 to 9 layers to optimize the original wavelet denoising combination. By analyzing the low-frequency and high-frequency parts of the signal spectrum before and after denoising, it was found that wavelet transform can effectively denoise the fluid signal in the reactor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
111
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
期刊最新文献
Issue Information Enhancing the catalytic performance of Cu/ZnO/Al2O3 catalyst in methanol synthesis from biomass‐derived syngas with CeO2, MnO2 and ZrO2 as promoters Correction of the cracking mechanism ratio in catalytic cracking process to characterize the thermal cracking reaction and realize highly sensitive identification of catalysts Removal of thiophene compounds from model fuel with supported copper on active carbon, adsorption kinetics, and isotherms Structure and composition of mesophase pitch prepared from aromatic‐rich fluid catalytic cracking slurry under different process conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1