利用合成和半合成点云和图像来测试校正激光雷达数据的新方法

K. Pargieła, A. Rzonca, M. Twardowski
{"title":"利用合成和半合成点云和图像来测试校正激光雷达数据的新方法","authors":"K. Pargieła, A. Rzonca, M. Twardowski","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-145-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The paper presents the application of lidar data and photo datasets, external orientation parameters (EOPs), ground control points (GCPs), and check points for testing new methods of geometric lidar data correction. These datasets are utilized to validate novel approaches such as altimetric deformation methods based on stereo models or lidargrammetric methods that utilize image matching and specialized lidar data formats. The paper presents specific use cases of these data as examples of two tested processes. After describing these processes, the methods of synthetic and semisynthetic data simulation are presented. The simulation is directed and subordinated to the aspects of the new method being tested. The data must be used for testing starting from basic functionality up to specific and untypical cases of new method application. By presenting specific cases of the application of synthetic and semisynthetic data, the paper introduces the general idea of benchmarking based on synthetic and semisynthetic data as another means of validating new methods. These artificially generated datasets provide a controlled environment for evaluating the effectiveness of new methods to be investigated.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE UTILIZATION OF SYNTHETIC AND SEMISYNTHETIC POINT CLOUDS AND IMAGES FOR TESTING NOVEL APPROACHES FOR CORRECTING LIDAR DATA\",\"authors\":\"K. Pargieła, A. Rzonca, M. Twardowski\",\"doi\":\"10.5194/isprs-archives-xlviii-1-w3-2023-145-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The paper presents the application of lidar data and photo datasets, external orientation parameters (EOPs), ground control points (GCPs), and check points for testing new methods of geometric lidar data correction. These datasets are utilized to validate novel approaches such as altimetric deformation methods based on stereo models or lidargrammetric methods that utilize image matching and specialized lidar data formats. The paper presents specific use cases of these data as examples of two tested processes. After describing these processes, the methods of synthetic and semisynthetic data simulation are presented. The simulation is directed and subordinated to the aspects of the new method being tested. The data must be used for testing starting from basic functionality up to specific and untypical cases of new method application. By presenting specific cases of the application of synthetic and semisynthetic data, the paper introduces the general idea of benchmarking based on synthetic and semisynthetic data as another means of validating new methods. These artificially generated datasets provide a controlled environment for evaluating the effectiveness of new methods to be investigated.\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-145-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-145-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文介绍了激光雷达数据和照片数据集、外部定向参数(EOPs)、地面控制点(gcp)和检查点在几何激光雷达数据校正新方法测试中的应用。这些数据集用于验证新方法,如基于立体模型的高程变形方法或利用图像匹配和专用激光雷达数据格式的激光测量方法。本文将这些数据的具体用例作为两个测试过程的示例。在描述了这些过程之后,提出了综合和半综合数据仿真的方法。模拟是直接和服从于被测试的新方法的各个方面的。数据必须用于从基本功能开始的测试,直到新方法应用的特定和非典型案例。通过介绍合成和半合成数据应用的具体案例,本文介绍了基于合成和半合成数据的基准测试的总体思想,作为验证新方法的另一种手段。这些人工生成的数据集为评估待研究的新方法的有效性提供了一个可控的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE UTILIZATION OF SYNTHETIC AND SEMISYNTHETIC POINT CLOUDS AND IMAGES FOR TESTING NOVEL APPROACHES FOR CORRECTING LIDAR DATA
Abstract. The paper presents the application of lidar data and photo datasets, external orientation parameters (EOPs), ground control points (GCPs), and check points for testing new methods of geometric lidar data correction. These datasets are utilized to validate novel approaches such as altimetric deformation methods based on stereo models or lidargrammetric methods that utilize image matching and specialized lidar data formats. The paper presents specific use cases of these data as examples of two tested processes. After describing these processes, the methods of synthetic and semisynthetic data simulation are presented. The simulation is directed and subordinated to the aspects of the new method being tested. The data must be used for testing starting from basic functionality up to specific and untypical cases of new method application. By presenting specific cases of the application of synthetic and semisynthetic data, the paper introduces the general idea of benchmarking based on synthetic and semisynthetic data as another means of validating new methods. These artificially generated datasets provide a controlled environment for evaluating the effectiveness of new methods to be investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1