Unet神经网络在sentinel-2农业土地覆盖分类中的应用

P. Kramarczyk, B. Hejmanowska
{"title":"Unet神经网络在sentinel-2农业土地覆盖分类中的应用","authors":"P. Kramarczyk, B. Hejmanowska","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-85-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The article discusses a method for classifying land cover types in rural areas using a trained neural network. The focus is on distinguishing agriculturally cultivated areas and differentiating bare soil from quarry areas. This distinction is not present in publicly available databases like CORINE, UrbanAtlas, EuroSAT, or BigEarthNet. The research involves training a neural network on multi-temporal patches to classify Sentinel-2 images rapidly. This approach allows automated monitoring of cultivated areas, determining periods of bare soil vulnerability to erosion, and identifying open-pit areas with similar spectral characteristics to bare soil. After training the U-Net network, it achieved an average classification accuracy of 90% (OA) in the test areas, highlighting the importance of using OA for multi-class classifications, instead of ACC. Analysis of our main classes revealed high accuracy, 99.01% for quarries, 92.3% for bare soil, and an average of 94.8% for annual crops, demonstrating the model's capability to differentiate between crops at various growth stages and assess land cover categories effectively.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":"194 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNET NEURAL NETWORK IN AGRICULTURAL LAND COVER CLASSIFICATION USING SENTINEL-2\",\"authors\":\"P. Kramarczyk, B. Hejmanowska\",\"doi\":\"10.5194/isprs-archives-xlviii-1-w3-2023-85-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The article discusses a method for classifying land cover types in rural areas using a trained neural network. The focus is on distinguishing agriculturally cultivated areas and differentiating bare soil from quarry areas. This distinction is not present in publicly available databases like CORINE, UrbanAtlas, EuroSAT, or BigEarthNet. The research involves training a neural network on multi-temporal patches to classify Sentinel-2 images rapidly. This approach allows automated monitoring of cultivated areas, determining periods of bare soil vulnerability to erosion, and identifying open-pit areas with similar spectral characteristics to bare soil. After training the U-Net network, it achieved an average classification accuracy of 90% (OA) in the test areas, highlighting the importance of using OA for multi-class classifications, instead of ACC. Analysis of our main classes revealed high accuracy, 99.01% for quarries, 92.3% for bare soil, and an average of 94.8% for annual crops, demonstrating the model's capability to differentiate between crops at various growth stages and assess land cover categories effectively.\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\"194 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-85-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-85-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了一种基于训练神经网络的农村土地覆盖类型分类方法。重点是区分农业耕地和区分裸露的土壤和采石场。这种区别在诸如CORINE、UrbanAtlas、EuroSAT或BigEarthNet等公开可用的数据库中并不存在。该研究包括在多时间块上训练神经网络以快速对Sentinel-2图像进行分类。这种方法可以自动监测耕地,确定裸露土壤易受侵蚀的时期,并识别与裸露土壤具有相似光谱特征的露天矿区域。U-Net网络经过训练后,在测试区域的平均分类准确率达到90% (OA),突出了使用OA进行多类分类的重要性,而不是使用ACC。对主要类别的分析表明,采石场的准确率为99.01%,裸地为92.3%,一年生作物的平均准确率为94.8%,表明该模型能够区分不同生长阶段的作物并有效评估土地覆盖类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UNET NEURAL NETWORK IN AGRICULTURAL LAND COVER CLASSIFICATION USING SENTINEL-2
Abstract. The article discusses a method for classifying land cover types in rural areas using a trained neural network. The focus is on distinguishing agriculturally cultivated areas and differentiating bare soil from quarry areas. This distinction is not present in publicly available databases like CORINE, UrbanAtlas, EuroSAT, or BigEarthNet. The research involves training a neural network on multi-temporal patches to classify Sentinel-2 images rapidly. This approach allows automated monitoring of cultivated areas, determining periods of bare soil vulnerability to erosion, and identifying open-pit areas with similar spectral characteristics to bare soil. After training the U-Net network, it achieved an average classification accuracy of 90% (OA) in the test areas, highlighting the importance of using OA for multi-class classifications, instead of ACC. Analysis of our main classes revealed high accuracy, 99.01% for quarries, 92.3% for bare soil, and an average of 94.8% for annual crops, demonstrating the model's capability to differentiate between crops at various growth stages and assess land cover categories effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1