{"title":"澳大利亚鳞片胶蛾 Ogmograptis(鳞翅目:Bucculatricidae)的线粒体系统发生组学及鳞翅目内部深层关系研究","authors":"Stephen L. Cameron","doi":"10.1111/aen.12672","DOIUrl":null,"url":null,"abstract":"<p>Larval feeding by the moth genus <i>Ogmograptis</i> (Bucculatricidae: Lepidoptera) creates one of the most iconic features of the Australian bush—the ‘scribbles’ found on smooth-barked <i>Eucalyptus</i>. The taxonomic history of <i>Ogmograptis</i> has been challenging, with members of the genus being initially described in four different genera representing three different superfamilies. While prior phylogenetic analysis has placed <i>Ogmograptis</i> within the Bucculatricidae, these findings were not strongly supported and there was poor resolution of the early diverging, non-Apoditrysia superfamilies that <i>Ogmograptis</i> has been assigned to by different authors. As a consequence, the unique larval biology of scribbly moths cannot yet be interpreted in an evolutionary context. Phylogenomic analysis of whole mitochondrial (mt) genome data for <i>Ogmograptis</i>, related non-Apoditrysia and taxa representing the superfamily-level diversity of the order strongly supports its placement within the Bucculatricidae, a monophyletic Gracillarioidea and a clade of Gracillarioidea + Yponomeutoidea that was sister to the Apoditrysia. The hypermetamorphic larval development in <i>Ogmograptis</i> can thus be interpreted as an elaboration of the ancestral pattern of the clade Gracillarioidea + Yponomeutoidea that has specialised for phellogen/callus feeding within the bark. The utility of mt genomes for deep-level phylogenetic study of the Lepidoptera is reviewed against prior multi-locus and nuclear phylogenomic datasets. Mt phylogenomic analyses are sensitive to analytical methods and the inclusion versus exclusion of high-variability data partitions for deep-level relationships, already shown to be uncertain by multi-locus or nuclear phylogenomic analyses, in particular relationships between apoditrysian and obtectomeran superfamilies. While mt genomes are ideal for examining the relationships of rare, physically small or difficult to collect taxa such as <i>Ogmograptis</i>, due to the low technical hurdles to collecting whole genomes, continued attention to the analytical sensitivities of phylogenies that use this data source is needed to reliably advance our understanding of deep lepidopteran evolution.</p>","PeriodicalId":8574,"journal":{"name":"Austral Entomology","volume":"62 4","pages":"449-463"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aen.12672","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial phylogenomics of the Australian scribbly gum moth Ogmograptis (Lepidoptera: Bucculatricidae) and an examination of deep-level relationships within Lepidoptera\",\"authors\":\"Stephen L. Cameron\",\"doi\":\"10.1111/aen.12672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Larval feeding by the moth genus <i>Ogmograptis</i> (Bucculatricidae: Lepidoptera) creates one of the most iconic features of the Australian bush—the ‘scribbles’ found on smooth-barked <i>Eucalyptus</i>. The taxonomic history of <i>Ogmograptis</i> has been challenging, with members of the genus being initially described in four different genera representing three different superfamilies. While prior phylogenetic analysis has placed <i>Ogmograptis</i> within the Bucculatricidae, these findings were not strongly supported and there was poor resolution of the early diverging, non-Apoditrysia superfamilies that <i>Ogmograptis</i> has been assigned to by different authors. As a consequence, the unique larval biology of scribbly moths cannot yet be interpreted in an evolutionary context. Phylogenomic analysis of whole mitochondrial (mt) genome data for <i>Ogmograptis</i>, related non-Apoditrysia and taxa representing the superfamily-level diversity of the order strongly supports its placement within the Bucculatricidae, a monophyletic Gracillarioidea and a clade of Gracillarioidea + Yponomeutoidea that was sister to the Apoditrysia. The hypermetamorphic larval development in <i>Ogmograptis</i> can thus be interpreted as an elaboration of the ancestral pattern of the clade Gracillarioidea + Yponomeutoidea that has specialised for phellogen/callus feeding within the bark. The utility of mt genomes for deep-level phylogenetic study of the Lepidoptera is reviewed against prior multi-locus and nuclear phylogenomic datasets. Mt phylogenomic analyses are sensitive to analytical methods and the inclusion versus exclusion of high-variability data partitions for deep-level relationships, already shown to be uncertain by multi-locus or nuclear phylogenomic analyses, in particular relationships between apoditrysian and obtectomeran superfamilies. While mt genomes are ideal for examining the relationships of rare, physically small or difficult to collect taxa such as <i>Ogmograptis</i>, due to the low technical hurdles to collecting whole genomes, continued attention to the analytical sensitivities of phylogenies that use this data source is needed to reliably advance our understanding of deep lepidopteran evolution.</p>\",\"PeriodicalId\":8574,\"journal\":{\"name\":\"Austral Entomology\",\"volume\":\"62 4\",\"pages\":\"449-463\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aen.12672\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austral Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aen.12672\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austral Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aen.12672","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Mitochondrial phylogenomics of the Australian scribbly gum moth Ogmograptis (Lepidoptera: Bucculatricidae) and an examination of deep-level relationships within Lepidoptera
Larval feeding by the moth genus Ogmograptis (Bucculatricidae: Lepidoptera) creates one of the most iconic features of the Australian bush—the ‘scribbles’ found on smooth-barked Eucalyptus. The taxonomic history of Ogmograptis has been challenging, with members of the genus being initially described in four different genera representing three different superfamilies. While prior phylogenetic analysis has placed Ogmograptis within the Bucculatricidae, these findings were not strongly supported and there was poor resolution of the early diverging, non-Apoditrysia superfamilies that Ogmograptis has been assigned to by different authors. As a consequence, the unique larval biology of scribbly moths cannot yet be interpreted in an evolutionary context. Phylogenomic analysis of whole mitochondrial (mt) genome data for Ogmograptis, related non-Apoditrysia and taxa representing the superfamily-level diversity of the order strongly supports its placement within the Bucculatricidae, a monophyletic Gracillarioidea and a clade of Gracillarioidea + Yponomeutoidea that was sister to the Apoditrysia. The hypermetamorphic larval development in Ogmograptis can thus be interpreted as an elaboration of the ancestral pattern of the clade Gracillarioidea + Yponomeutoidea that has specialised for phellogen/callus feeding within the bark. The utility of mt genomes for deep-level phylogenetic study of the Lepidoptera is reviewed against prior multi-locus and nuclear phylogenomic datasets. Mt phylogenomic analyses are sensitive to analytical methods and the inclusion versus exclusion of high-variability data partitions for deep-level relationships, already shown to be uncertain by multi-locus or nuclear phylogenomic analyses, in particular relationships between apoditrysian and obtectomeran superfamilies. While mt genomes are ideal for examining the relationships of rare, physically small or difficult to collect taxa such as Ogmograptis, due to the low technical hurdles to collecting whole genomes, continued attention to the analytical sensitivities of phylogenies that use this data source is needed to reliably advance our understanding of deep lepidopteran evolution.
期刊介绍:
Austral Entomology is a scientific journal of entomology for the Southern Hemisphere. It publishes Original Articles that are peer-reviewed research papers from the study of the behaviour, biology, biosystematics, conservation biology, ecology, evolution, forensic and medical entomology, molecular biology, public health, urban entomology, physiology and the use and control of insects, arachnids and myriapods. The journal also publishes Reviews on research and theory or commentaries on current areas of research, innovation or rapid development likely to be of broad interest – these may be submitted or invited. Book Reviews will also be considered provided the works are of global significance. Manuscripts from authors in the Northern Hemisphere are encouraged provided that the research has relevance to or broad readership within the Southern Hemisphere. All submissions are peer-reviewed by at least two referees expert in the field of the submitted paper. Special issues are encouraged; please contact the Chief Editor for further information.