M. S. Afify, N. S. Alharthi, R. E. Tolba, M. E. Yahia
{"title":"尘埃声波可能起源于自引力磁化尘埃等离子体","authors":"M. S. Afify, N. S. Alharthi, R. E. Tolba, M. E. Yahia","doi":"10.1080/17455030.2023.2271573","DOIUrl":null,"url":null,"abstract":"AbstractThe dynamics of dust acoustic waves (DAWs) in a collision-magnetized dusty plasma are still unclear. To achieve this, we investigate the dynamics of a plasma system consisting of Boltzmann-distributed electrons and ions, and fluid-negative dust particles. The generalized hydrodynamic model of coupled particles is reduced using conventional reductive perturbation theory to a single evolution equation known as the complex Ginzburg-Landau (CGL) equation. Our results show that the energy of rogue waves (RW) is increased by high-energy electrons and decreased by high-energy ions for small polarization parameter. We also observed that the energy of rogue waves increased with decreasing the polarization parameter and the gravitational force coefficient, while increasing dust grain concentration enhances the wave energy. The application of this study to dusty magnetoplasma in space and laboratory plasmas is pointed out.KEYWORDS: Radiation pressurenonlinear dust acoustic rogue waves (DARW)shock-like wavebrigth soliton wave AcknowledgmentsM. S. Afify thanks Prof. Dr. M. E. Innocenti at Ruhr-Universität Bochum for her hospitality and support. The authors appreciate the anonymous referees' insightful criticism, which helped improve the text.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingM. S. Afify would like to thank the Alexander-von-Humboldt Research Fellowship (Bonn, Germany) for its financial support.","PeriodicalId":23598,"journal":{"name":"Waves in Random and Complex Media","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dust acoustic waves potentially originate in a self-gravitating magnetized dusty plasma\",\"authors\":\"M. S. Afify, N. S. Alharthi, R. E. Tolba, M. E. Yahia\",\"doi\":\"10.1080/17455030.2023.2271573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe dynamics of dust acoustic waves (DAWs) in a collision-magnetized dusty plasma are still unclear. To achieve this, we investigate the dynamics of a plasma system consisting of Boltzmann-distributed electrons and ions, and fluid-negative dust particles. The generalized hydrodynamic model of coupled particles is reduced using conventional reductive perturbation theory to a single evolution equation known as the complex Ginzburg-Landau (CGL) equation. Our results show that the energy of rogue waves (RW) is increased by high-energy electrons and decreased by high-energy ions for small polarization parameter. We also observed that the energy of rogue waves increased with decreasing the polarization parameter and the gravitational force coefficient, while increasing dust grain concentration enhances the wave energy. The application of this study to dusty magnetoplasma in space and laboratory plasmas is pointed out.KEYWORDS: Radiation pressurenonlinear dust acoustic rogue waves (DARW)shock-like wavebrigth soliton wave AcknowledgmentsM. S. Afify thanks Prof. Dr. M. E. Innocenti at Ruhr-Universität Bochum for her hospitality and support. The authors appreciate the anonymous referees' insightful criticism, which helped improve the text.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingM. S. Afify would like to thank the Alexander-von-Humboldt Research Fellowship (Bonn, Germany) for its financial support.\",\"PeriodicalId\":23598,\"journal\":{\"name\":\"Waves in Random and Complex Media\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waves in Random and Complex Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17455030.2023.2271573\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waves in Random and Complex Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17455030.2023.2271573","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Dust acoustic waves potentially originate in a self-gravitating magnetized dusty plasma
AbstractThe dynamics of dust acoustic waves (DAWs) in a collision-magnetized dusty plasma are still unclear. To achieve this, we investigate the dynamics of a plasma system consisting of Boltzmann-distributed electrons and ions, and fluid-negative dust particles. The generalized hydrodynamic model of coupled particles is reduced using conventional reductive perturbation theory to a single evolution equation known as the complex Ginzburg-Landau (CGL) equation. Our results show that the energy of rogue waves (RW) is increased by high-energy electrons and decreased by high-energy ions for small polarization parameter. We also observed that the energy of rogue waves increased with decreasing the polarization parameter and the gravitational force coefficient, while increasing dust grain concentration enhances the wave energy. The application of this study to dusty magnetoplasma in space and laboratory plasmas is pointed out.KEYWORDS: Radiation pressurenonlinear dust acoustic rogue waves (DARW)shock-like wavebrigth soliton wave AcknowledgmentsM. S. Afify thanks Prof. Dr. M. E. Innocenti at Ruhr-Universität Bochum for her hospitality and support. The authors appreciate the anonymous referees' insightful criticism, which helped improve the text.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingM. S. Afify would like to thank the Alexander-von-Humboldt Research Fellowship (Bonn, Germany) for its financial support.
期刊介绍:
Waves in Random and Complex Media (formerly Waves in Random Media ) is a broad, interdisciplinary journal that reports theoretical, applied and experimental research related to any wave phenomena.
The field of wave phenomena is all-pervading, fast-moving and exciting; more and more, researchers are looking for a journal which addresses the understanding of wave-matter interactions in increasingly complex natural and engineered media. With its foundations in the scattering and propagation community, Waves in Random and Complex Media is becoming a key forum for research in both established fields such as imaging through turbulence, as well as emerging fields such as metamaterials.
The Journal is of interest to scientists and engineers working in the field of wave propagation, scattering and imaging in random or complex media. Papers on theoretical developments, experimental results and analytical/numerical studies are considered for publication, as are deterministic problems when also linked to random or complex media. Papers are expected to report original work, and must be comprehensible and of general interest to the broad community working with wave phenomena.