线发射测绘仪微热计光谱仪

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Astronomical Telescopes Instruments and Systems Pub Date : 2023-10-19 DOI:10.1117/1.jatis.9.4.041002
Simon R. Bandler, Joseph S. Adams, Edward G. Amatucci, Edgar R. Canavan, James A. Chervenak, Renata S. Cumbee, Johannes P. D. Dercksen, Michael J. DiPirro, William B. Doriese, Megan E. Eckart, Manuel Gonzalez, Janice Houston, Brian Jackson, Amir E. Jahromi, Steven J. Kenyon, Caroline A. Kilbourne, Edmund Hodges-Kluck, Ralph Kraft, Xiaoyi Li, Maxim Markevitch, Dan McCammon, Jeffrey R. Olson, Elizabeth Osborne, Kazuhiro Sakai, Daniel Patnaude, Frederick S. Porter, Damien Prêle, Peter J. Shirron, Stephen J. Smith, Terrence M. Smith, Nicholas A. Wakeham, Henk J. van Weers
{"title":"线发射测绘仪微热计光谱仪","authors":"Simon R. Bandler, Joseph S. Adams, Edward G. Amatucci, Edgar R. Canavan, James A. Chervenak, Renata S. Cumbee, Johannes P. D. Dercksen, Michael J. DiPirro, William B. Doriese, Megan E. Eckart, Manuel Gonzalez, Janice Houston, Brian Jackson, Amir E. Jahromi, Steven J. Kenyon, Caroline A. Kilbourne, Edmund Hodges-Kluck, Ralph Kraft, Xiaoyi Li, Maxim Markevitch, Dan McCammon, Jeffrey R. Olson, Elizabeth Osborne, Kazuhiro Sakai, Daniel Patnaude, Frederick S. Porter, Damien Prêle, Peter J. Shirron, Stephen J. Smith, Terrence M. Smith, Nicholas A. Wakeham, Henk J. van Weers","doi":"10.1117/1.jatis.9.4.041002","DOIUrl":null,"url":null,"abstract":"The line emission mapper (LEM) is a probe-class mission concept that is designed to detect x-ray emission lines from hot ionized gas (T > 106 K) that will enable us to test galaxy evolution theories. It will permit us to study the effects of stellar and black-hole feedback and flows of baryonic matter into and out of galaxies. The key to being able to study the hot gases that are otherwise invisible to current imaging x-ray spectrometers is that the energy resolution is sufficient to use cosmological redshift to separate extragalactic source lines from foreground Milky Way emission. LEM incorporates a large-format microcalorimeter array instrument called the LEM microcalorimeter spectrometer (LMS) with a light-weight x-ray optic with 10” half power diameter angular resolution. The LMS microcalorimeter array has pixels with 15″ pixel pitch over a 33′ field of view (FOV) optimized for the 0.3 to 2 keV energy band. The central 7′ region of the array has an energy resolution of 1.3 eV at 1 keV and the rest of the FOV has 2.5 eV energy resolution at 1 keV. The array will be read out with state-of-the-art time-division multiplexing. We present an overview of the LMS instrument, including details of the entire detection chain, the focal plane assembly, as well as the cooling system and overall mechanical and thermal design. For each of the key technologies, we discuss the current technology readiness level and the plan to advance them to be ready for flight. We also describe the current system design and our estimate for the mass, power, and data rate of the instrument. The design details presented concentrate primarily on the unique aspects of the LMS design compared with prior missions and confirm that the type of microcalorimeter instrument needed for LEM is not only feasible but also technically mature.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Line emission mapper microcalorimeter spectrometer\",\"authors\":\"Simon R. Bandler, Joseph S. Adams, Edward G. Amatucci, Edgar R. Canavan, James A. Chervenak, Renata S. Cumbee, Johannes P. D. Dercksen, Michael J. DiPirro, William B. Doriese, Megan E. Eckart, Manuel Gonzalez, Janice Houston, Brian Jackson, Amir E. Jahromi, Steven J. Kenyon, Caroline A. Kilbourne, Edmund Hodges-Kluck, Ralph Kraft, Xiaoyi Li, Maxim Markevitch, Dan McCammon, Jeffrey R. Olson, Elizabeth Osborne, Kazuhiro Sakai, Daniel Patnaude, Frederick S. Porter, Damien Prêle, Peter J. Shirron, Stephen J. Smith, Terrence M. Smith, Nicholas A. Wakeham, Henk J. van Weers\",\"doi\":\"10.1117/1.jatis.9.4.041002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The line emission mapper (LEM) is a probe-class mission concept that is designed to detect x-ray emission lines from hot ionized gas (T > 106 K) that will enable us to test galaxy evolution theories. It will permit us to study the effects of stellar and black-hole feedback and flows of baryonic matter into and out of galaxies. The key to being able to study the hot gases that are otherwise invisible to current imaging x-ray spectrometers is that the energy resolution is sufficient to use cosmological redshift to separate extragalactic source lines from foreground Milky Way emission. LEM incorporates a large-format microcalorimeter array instrument called the LEM microcalorimeter spectrometer (LMS) with a light-weight x-ray optic with 10” half power diameter angular resolution. The LMS microcalorimeter array has pixels with 15″ pixel pitch over a 33′ field of view (FOV) optimized for the 0.3 to 2 keV energy band. The central 7′ region of the array has an energy resolution of 1.3 eV at 1 keV and the rest of the FOV has 2.5 eV energy resolution at 1 keV. The array will be read out with state-of-the-art time-division multiplexing. We present an overview of the LMS instrument, including details of the entire detection chain, the focal plane assembly, as well as the cooling system and overall mechanical and thermal design. For each of the key technologies, we discuss the current technology readiness level and the plan to advance them to be ready for flight. We also describe the current system design and our estimate for the mass, power, and data rate of the instrument. The design details presented concentrate primarily on the unique aspects of the LMS design compared with prior missions and confirm that the type of microcalorimeter instrument needed for LEM is not only feasible but also technically mature.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jatis.9.4.041002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jatis.9.4.041002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

线发射成像仪(LEM)是一个探测器级的任务概念,旨在探测热电离气体(T > 106 K)的x射线发射线,这将使我们能够测试星系演化理论。它将使我们能够研究恒星和黑洞反馈的影响,以及重子物质进出星系的流动。能够研究当前成像x射线光谱仪无法观测到的热气体的关键是,能量分辨率足以使用宇宙红移来分离河外源线和前景银河系的发射。LEM集成了一个大型微热量计阵列仪器,称为LEM微热量计光谱仪(LMS),具有10英寸半功率直径角分辨率的轻型x射线光学器件。LMS微热量计阵列具有15″像素间距的像素,在33 '视场(FOV)上优化了0.3至2 keV的能量带。阵列的中心7 '区域在1 keV下具有1.3 eV的能量分辨率,而视场的其余部分在1 keV下具有2.5 eV的能量分辨率。阵列将用最先进的时分多路复用技术读出。我们介绍了LMS仪器的概述,包括整个检测链的细节,焦平面组件,以及冷却系统和整体机械和热设计。对于每一项关键技术,我们讨论了当前的技术准备水平和推进它们为飞行做好准备的计划。我们还描述了当前的系统设计和我们对仪器的质量、功率和数据速率的估计。所提出的设计细节主要集中在登月舱设计与先前任务相比的独特方面,并确认登月舱所需的微热量计仪器类型不仅可行,而且在技术上也成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Line emission mapper microcalorimeter spectrometer
The line emission mapper (LEM) is a probe-class mission concept that is designed to detect x-ray emission lines from hot ionized gas (T > 106 K) that will enable us to test galaxy evolution theories. It will permit us to study the effects of stellar and black-hole feedback and flows of baryonic matter into and out of galaxies. The key to being able to study the hot gases that are otherwise invisible to current imaging x-ray spectrometers is that the energy resolution is sufficient to use cosmological redshift to separate extragalactic source lines from foreground Milky Way emission. LEM incorporates a large-format microcalorimeter array instrument called the LEM microcalorimeter spectrometer (LMS) with a light-weight x-ray optic with 10” half power diameter angular resolution. The LMS microcalorimeter array has pixels with 15″ pixel pitch over a 33′ field of view (FOV) optimized for the 0.3 to 2 keV energy band. The central 7′ region of the array has an energy resolution of 1.3 eV at 1 keV and the rest of the FOV has 2.5 eV energy resolution at 1 keV. The array will be read out with state-of-the-art time-division multiplexing. We present an overview of the LMS instrument, including details of the entire detection chain, the focal plane assembly, as well as the cooling system and overall mechanical and thermal design. For each of the key technologies, we discuss the current technology readiness level and the plan to advance them to be ready for flight. We also describe the current system design and our estimate for the mass, power, and data rate of the instrument. The design details presented concentrate primarily on the unique aspects of the LMS design compared with prior missions and confirm that the type of microcalorimeter instrument needed for LEM is not only feasible but also technically mature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
期刊最新文献
Design, implementation, and performance of the primary reflector for SALTUS Solar system science with the Single Aperture Large Telescope for Universe Studies space observatory Milky Way and nearby galaxy science with the SALTUS space observatory Adjustable X-ray optics: thin-film actuator measurement and figure correction performance FIREBall-2 UV balloon telescope in-flight calibration system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1