{"title":"求解Riesz空间分数扩散问题的Richardson外推法","authors":"Ren‐jun Qi, Zhi‐zhong Sun","doi":"10.1002/num.23076","DOIUrl":null,"url":null,"abstract":"Abstract The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"68 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Richardson extrapolation method for solving the Riesz space fractional diffusion problem\",\"authors\":\"Ren‐jun Qi, Zhi‐zhong Sun\",\"doi\":\"10.1002/num.23076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23076\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/num.23076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Richardson extrapolation method for solving the Riesz space fractional diffusion problem
Abstract The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.