小卫星热分析的多保真度框架

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Spacecraft and Rockets Pub Date : 2023-09-13 DOI:10.2514/1.a35666
Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka
{"title":"小卫星热分析的多保真度框架","authors":"Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka","doi":"10.2514/1.a35666","DOIUrl":null,"url":null,"abstract":"Anomalies, unexpected events, and model inaccuracies have detrimental effects on satellite operations. High-fidelity models are required, but these models quickly become large and expensive. Cheap or low-fidelity models speed up computation but lack accuracy. To compromise these requirements, this study proposes a multifidelity framework based on cokriging. The proposed multifidelity framework is compared against three other standard methods often used in satellite simulations: a standalone gated recurrent unit, Gaussian process regression, and the autoregressive integrated moving average with explanatory variables model. The robustness of high-fidelity data point placement is also examined. Moreover, the real-time aspect of the simulation is considered by applying the sliding window technique. This multifidelity framework is demonstrated using temperature data obtained from thermal vacuum testing of Small Demonstration Satellite 4: a 50-kg-class satellite. The multifidelity framework provided higher accuracy and robustness than the other methods, however, having a higher computational cost as compared to a purely low-fidelity model. Up to 92% reduction of the error was achieved by the proposed framework.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"55 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifidelity Framework for Small Satellite Thermal Analysis\",\"authors\":\"Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka\",\"doi\":\"10.2514/1.a35666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalies, unexpected events, and model inaccuracies have detrimental effects on satellite operations. High-fidelity models are required, but these models quickly become large and expensive. Cheap or low-fidelity models speed up computation but lack accuracy. To compromise these requirements, this study proposes a multifidelity framework based on cokriging. The proposed multifidelity framework is compared against three other standard methods often used in satellite simulations: a standalone gated recurrent unit, Gaussian process regression, and the autoregressive integrated moving average with explanatory variables model. The robustness of high-fidelity data point placement is also examined. Moreover, the real-time aspect of the simulation is considered by applying the sliding window technique. This multifidelity framework is demonstrated using temperature data obtained from thermal vacuum testing of Small Demonstration Satellite 4: a 50-kg-class satellite. The multifidelity framework provided higher accuracy and robustness than the other methods, however, having a higher computational cost as compared to a purely low-fidelity model. Up to 92% reduction of the error was achieved by the proposed framework.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35666\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35666","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

异常、意外事件和模型不准确对卫星操作有不利影响。高保真模型是必需的,但这些模型很快就会变得又大又贵。廉价或低保真度的模型加快了计算速度,但缺乏准确性。为了满足这些要求,本研究提出了一个基于共克里格的多保真度框架。提出的多保真框架与卫星模拟中常用的其他三种标准方法进行了比较:独立门控循环单元、高斯过程回归和自回归综合移动平均与解释变量模型。研究了高保真数据点放置的鲁棒性。此外,采用滑动窗口技术考虑了仿真的实时性。该多保真度框架使用从50公斤级卫星“小型示范卫星4号”的热真空测试中获得的温度数据进行了演示。与其他方法相比,多保真度框架提供了更高的精度和鲁棒性,但是与纯粹的低保真度模型相比,计算成本更高。该框架将误差降低了92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifidelity Framework for Small Satellite Thermal Analysis
Anomalies, unexpected events, and model inaccuracies have detrimental effects on satellite operations. High-fidelity models are required, but these models quickly become large and expensive. Cheap or low-fidelity models speed up computation but lack accuracy. To compromise these requirements, this study proposes a multifidelity framework based on cokriging. The proposed multifidelity framework is compared against three other standard methods often used in satellite simulations: a standalone gated recurrent unit, Gaussian process regression, and the autoregressive integrated moving average with explanatory variables model. The robustness of high-fidelity data point placement is also examined. Moreover, the real-time aspect of the simulation is considered by applying the sliding window technique. This multifidelity framework is demonstrated using temperature data obtained from thermal vacuum testing of Small Demonstration Satellite 4: a 50-kg-class satellite. The multifidelity framework provided higher accuracy and robustness than the other methods, however, having a higher computational cost as compared to a purely low-fidelity model. Up to 92% reduction of the error was achieved by the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
期刊最新文献
A systematic review of studies on resilience and risk and protective factors for health among refugee children in Nordic countries. Bayesian Reliability Analysis of the Enhanced Multimission Radioisotope Thermoelectric Generator Clarification: Seeded Hydrogen in Mars Transfer Vehicles Using Nuclear Thermal Propulsion Engines Clarification: Impacts of In-Situ Alternative Propellant on Nuclear Thermal Propulsion Mars Vehicle Architectures Concurrent Design Optimization of Tether-Net System and Actions for Reliable Space-Debris Capture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1