6g辅助无人机卡车网络:迈向高效的基本服务交付

Gunasekaran Raja, Gayathri Saravanan, Kapal Dev
{"title":"6g辅助无人机卡车网络:迈向高效的基本服务交付","authors":"Gunasekaran Raja, Gayathri Saravanan, Kapal Dev","doi":"10.1109/mcomstd.0003.2200003","DOIUrl":null,"url":null,"abstract":"Energy consumption is a critical constraint for Unmanned Aerial Vehicles (UAVs) delivery operations to achieve their full potential of providing fast delivery, reducing cost, and cutting emissions. In this article, we propose a synchronized delivery mechanism that employs trucks and UAVs to construct an energy efficient essential service delivery model using Multi-Swarm UAV-Truck (MSUT) framework in a sixth generation (6G) assisted environment. Firstly, we introduce an efficient Brain Storm Optimization (BSO) algorithm that determines the optimal placement location for the trucks and the number of UAV launch sites, given the delivery requirements for optimal delivery of essentials to the target destination. Further, a Multi-Agent Reinforcement Learning (MARL) model, namely Multi-Agent Advantage Actor Critic (MAAC), is employed on UAVs in a swarm for route optimization and efficient energy consumption while en route to the destination. We further investigate the reduced overall delivery time and energy metrics for the proposed UAV-truck network by comparing it with existing Deep Reinforcement Learning (DRL) delivery models.","PeriodicalId":36719,"journal":{"name":"IEEE Communications Standards Magazine","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"6G-Assisted UAV-Truck Networks: Toward Efficient Essential Services Delivery\",\"authors\":\"Gunasekaran Raja, Gayathri Saravanan, Kapal Dev\",\"doi\":\"10.1109/mcomstd.0003.2200003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy consumption is a critical constraint for Unmanned Aerial Vehicles (UAVs) delivery operations to achieve their full potential of providing fast delivery, reducing cost, and cutting emissions. In this article, we propose a synchronized delivery mechanism that employs trucks and UAVs to construct an energy efficient essential service delivery model using Multi-Swarm UAV-Truck (MSUT) framework in a sixth generation (6G) assisted environment. Firstly, we introduce an efficient Brain Storm Optimization (BSO) algorithm that determines the optimal placement location for the trucks and the number of UAV launch sites, given the delivery requirements for optimal delivery of essentials to the target destination. Further, a Multi-Agent Reinforcement Learning (MARL) model, namely Multi-Agent Advantage Actor Critic (MAAC), is employed on UAVs in a swarm for route optimization and efficient energy consumption while en route to the destination. We further investigate the reduced overall delivery time and energy metrics for the proposed UAV-truck network by comparing it with existing Deep Reinforcement Learning (DRL) delivery models.\",\"PeriodicalId\":36719,\"journal\":{\"name\":\"IEEE Communications Standards Magazine\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Standards Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mcomstd.0003.2200003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Standards Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mcomstd.0003.2200003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

能源消耗是无人机(uav)交付作业的关键制约因素,无法充分发挥其提供快速交付、降低成本和减少排放的潜力。在本文中,我们提出了一种采用卡车和无人机的同步交付机制,在第六代(6G)辅助环境中使用多群无人机-卡车(MSUT)框架构建节能的基本服务交付模型。首先,我们引入了一种高效的头脑风暴优化(BSO)算法,该算法确定了卡车的最佳放置位置和无人机发射地点的数量,并给出了将必需品最优运送到目标目的地的交付要求。在此基础上,将多智能体强化学习(MARL)模型,即多智能体优势行为者评价(MAAC)模型应用于蜂群无人机,优化其飞行路线,提高其到达目的地时的能量消耗效率。通过将所提出的无人机-卡车网络与现有的深度强化学习(DRL)交付模型进行比较,我们进一步研究了减少的总体交付时间和能量指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6G-Assisted UAV-Truck Networks: Toward Efficient Essential Services Delivery
Energy consumption is a critical constraint for Unmanned Aerial Vehicles (UAVs) delivery operations to achieve their full potential of providing fast delivery, reducing cost, and cutting emissions. In this article, we propose a synchronized delivery mechanism that employs trucks and UAVs to construct an energy efficient essential service delivery model using Multi-Swarm UAV-Truck (MSUT) framework in a sixth generation (6G) assisted environment. Firstly, we introduce an efficient Brain Storm Optimization (BSO) algorithm that determines the optimal placement location for the trucks and the number of UAV launch sites, given the delivery requirements for optimal delivery of essentials to the target destination. Further, a Multi-Agent Reinforcement Learning (MARL) model, namely Multi-Agent Advantage Actor Critic (MAAC), is employed on UAVs in a swarm for route optimization and efficient energy consumption while en route to the destination. We further investigate the reduced overall delivery time and energy metrics for the proposed UAV-truck network by comparing it with existing Deep Reinforcement Learning (DRL) delivery models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
55
期刊最新文献
IEEE 802.11BB Reference Channel Models For Light Communications Interface To Security Functions: An Overview And Comparison Of I2nsf And Openc2 Further Enhanced Urllc And Industrial IoT Support With Release-17 5g New Radio A Secure Ndn-based Architecture For Electronic Voting In 6g Space-air-ground Integrated Networks For Urllc In Spatial Digital Twins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1