基于部分观测数据部分聚类的认知传感器网络模块估计

None Abdul bin Ismail
{"title":"基于部分观测数据部分聚类的认知传感器网络模块估计","authors":"None Abdul bin Ismail","doi":"10.36548/jsws.2023.3.006","DOIUrl":null,"url":null,"abstract":"The proposed study is on the partial clustering algorithms for cognitive sensor networks that deal with partially observed data. The proposed algorithms aim to estimate clusters in the presence of missing values and leverage data imputation techniques to fill in the gaps in the target and station device matrices. A modified loss function is introduced to shape the cluster centers, and robust Non-negative Matrix Factorization (NMF) algorithms are utilized to enhance the robustness of the clustering process. This research contributes to the field of cognitive sensor networks by providing insights into the challenges of partial clustering and presenting effective algorithms to address them. The proposed methods have the potential to enhance the performance of clustering tasks in various domains, including sensor networks, by accounting for missing data and producing accurate cluster reconstructions.","PeriodicalId":488591,"journal":{"name":"IRO Journal On Sustainable Wireless Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comodule Estimation of Cognitive Sensor Networks Based on Partial Clustering for Partial Observed Data\",\"authors\":\"None Abdul bin Ismail\",\"doi\":\"10.36548/jsws.2023.3.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed study is on the partial clustering algorithms for cognitive sensor networks that deal with partially observed data. The proposed algorithms aim to estimate clusters in the presence of missing values and leverage data imputation techniques to fill in the gaps in the target and station device matrices. A modified loss function is introduced to shape the cluster centers, and robust Non-negative Matrix Factorization (NMF) algorithms are utilized to enhance the robustness of the clustering process. This research contributes to the field of cognitive sensor networks by providing insights into the challenges of partial clustering and presenting effective algorithms to address them. The proposed methods have the potential to enhance the performance of clustering tasks in various domains, including sensor networks, by accounting for missing data and producing accurate cluster reconstructions.\",\"PeriodicalId\":488591,\"journal\":{\"name\":\"IRO Journal On Sustainable Wireless Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRO Journal On Sustainable Wireless Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jsws.2023.3.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRO Journal On Sustainable Wireless Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jsws.2023.3.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对认知传感器网络中处理部分观测数据的部分聚类算法进行研究。所提出的算法旨在估计存在缺失值的簇,并利用数据插入技术来填补目标和站设备矩阵中的空白。引入一种修正的损失函数来形成聚类中心,并利用鲁棒非负矩阵分解(NMF)算法来增强聚类过程的鲁棒性。本研究通过提供对部分聚类挑战的见解并提出有效的算法来解决这些挑战,为认知传感器网络领域做出了贡献。所提出的方法有可能通过考虑缺失数据和产生准确的聚类重建来提高包括传感器网络在内的各个领域的聚类任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comodule Estimation of Cognitive Sensor Networks Based on Partial Clustering for Partial Observed Data
The proposed study is on the partial clustering algorithms for cognitive sensor networks that deal with partially observed data. The proposed algorithms aim to estimate clusters in the presence of missing values and leverage data imputation techniques to fill in the gaps in the target and station device matrices. A modified loss function is introduced to shape the cluster centers, and robust Non-negative Matrix Factorization (NMF) algorithms are utilized to enhance the robustness of the clustering process. This research contributes to the field of cognitive sensor networks by providing insights into the challenges of partial clustering and presenting effective algorithms to address them. The proposed methods have the potential to enhance the performance of clustering tasks in various domains, including sensor networks, by accounting for missing data and producing accurate cluster reconstructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Kitchen Safety and Emergency Response System using IoT Correlating Decision Theory with Cyber Threat Intelligence: Novel Perspectives Comodule Estimation of Cognitive Sensor Networks Based on Partial Clustering for Partial Observed Data Coding of Chipless RFID Tag using Multiresonator Initial Access through Beamforming in mmWave
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1