{"title":"基于铜锡比调整的硫化铜锡(Cu3SnS4)材料可控性研究","authors":"Mingrong Dong, Leikai Wei, Yan Zhu","doi":"10.1049/mna2.12176","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of pure phase Cu<sub>3</sub>SnS<sub>4</sub> is of great significance for improving its material properties. Here, the control law of Cu and Sn element ratio on the synthesis of pure phase Cu<sub>3</sub>SnS<sub>4</sub> from physical and chemical methods was analyzed through literature research. The results: (1) the adjustment of the Cu-to-Sn ratio metal elements as a phase control parameter has the characteristics of flexibility and controllability. (2) When the precursor component is rich in Cu and the chemical potential of the medium and high sulphur is high, the phase will develop to a wider thermodynamically stable region of Cu<sub>3</sub>SnS<sub>4</sub>. By adjusting the Cu-to-Sn ratio elements, when the release rate of anions and the reaction rate of cations adapt to each other, the thermodynamic reaction conditions can be well satisfied, which is beneficial to the preparation of pure phase Cu<sub>3</sub>SnS<sub>4</sub>. (3) The phase control method of Cu and Sn element ratio of template seed crystal can not only realize the reasonable regulation of Cu and Sn element ratio but also control the synthesis of phase more accurately. The results of this paper have certain reference values for the application of new materials synthesized by adjusting the proportion of elements.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"18 9-12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12176","citationCount":"0","resultStr":"{\"title\":\"Controllability study of copper-tin-sulphide (Cu3SnS4) material based on the ratio adjustment of Cu to Sn elements\",\"authors\":\"Mingrong Dong, Leikai Wei, Yan Zhu\",\"doi\":\"10.1049/mna2.12176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The synthesis of pure phase Cu<sub>3</sub>SnS<sub>4</sub> is of great significance for improving its material properties. Here, the control law of Cu and Sn element ratio on the synthesis of pure phase Cu<sub>3</sub>SnS<sub>4</sub> from physical and chemical methods was analyzed through literature research. The results: (1) the adjustment of the Cu-to-Sn ratio metal elements as a phase control parameter has the characteristics of flexibility and controllability. (2) When the precursor component is rich in Cu and the chemical potential of the medium and high sulphur is high, the phase will develop to a wider thermodynamically stable region of Cu<sub>3</sub>SnS<sub>4</sub>. By adjusting the Cu-to-Sn ratio elements, when the release rate of anions and the reaction rate of cations adapt to each other, the thermodynamic reaction conditions can be well satisfied, which is beneficial to the preparation of pure phase Cu<sub>3</sub>SnS<sub>4</sub>. (3) The phase control method of Cu and Sn element ratio of template seed crystal can not only realize the reasonable regulation of Cu and Sn element ratio but also control the synthesis of phase more accurately. The results of this paper have certain reference values for the application of new materials synthesized by adjusting the proportion of elements.</p>\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"18 9-12\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12176\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12176","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Controllability study of copper-tin-sulphide (Cu3SnS4) material based on the ratio adjustment of Cu to Sn elements
The synthesis of pure phase Cu3SnS4 is of great significance for improving its material properties. Here, the control law of Cu and Sn element ratio on the synthesis of pure phase Cu3SnS4 from physical and chemical methods was analyzed through literature research. The results: (1) the adjustment of the Cu-to-Sn ratio metal elements as a phase control parameter has the characteristics of flexibility and controllability. (2) When the precursor component is rich in Cu and the chemical potential of the medium and high sulphur is high, the phase will develop to a wider thermodynamically stable region of Cu3SnS4. By adjusting the Cu-to-Sn ratio elements, when the release rate of anions and the reaction rate of cations adapt to each other, the thermodynamic reaction conditions can be well satisfied, which is beneficial to the preparation of pure phase Cu3SnS4. (3) The phase control method of Cu and Sn element ratio of template seed crystal can not only realize the reasonable regulation of Cu and Sn element ratio but also control the synthesis of phase more accurately. The results of this paper have certain reference values for the application of new materials synthesized by adjusting the proportion of elements.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics