基于nbc的金属陶瓷生产比较:L-PBF增材制造与传统LPS粉末冶金

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiali in tehnologije Pub Date : 2023-10-03 DOI:10.17222/mit.2023.972
Fabio Miranda, Marcelo Otavio Dos Santos, Daniel Rodrigues, Rodrigo Santiago Coelho, Gilmar Ferreira Batalha
{"title":"基于nbc的金属陶瓷生产比较:L-PBF增材制造与传统LPS粉末冶金","authors":"Fabio Miranda, Marcelo Otavio Dos Santos, Daniel Rodrigues, Rodrigo Santiago Coelho, Gilmar Ferreira Batalha","doi":"10.17222/mit.2023.972","DOIUrl":null,"url":null,"abstract":"The production of carbide parts (cermet) by additive manufacturing, such as laser powder bed fusion (L-PBF), has been a great challenge due to the complex optimization of process parameters to improve density, porosity, microcracks or abnormal growth of grains and obtain a microstructure as homogeneous as possible. This work aims to compare the evolution of the microstructure when using the conventional route of powder metallurgy, i.e., liquid phase sintering (LPS) with the L-PBF direct additive manufacturing process, considering the NbC-based carbide material. Sample compositions were prepared in w/%, samples were compacted under 50–125 MPa, without polymeric binders, and they were sintered under a vacuum at temperatures of 1330 °C and 1370 °C. For the L-PBF process, a vibrating device made it possible to improve the fluidity of the mixtures of three alloys, NbC–30Co, NbC–30Ni and NbC–30(Co, Ni). The mixtures exhibited low sphericity, low fluidity and compressibility, which were improved with a roller compactor. Thin powder mixture deposition layers were evenly applied and well distributed across the powder bed to avoid defects and cracks during sintering. The L-PBF process parameters varied including a power of 50–125 W and a laser scanning speed of 25–125 mm·s–1. Different microstructures, identified with a light microscope (LM) and a scanning electron microscope (SEM), and properties obtained with the two processes, direct (L–PBF) and indirect sintering (LPS), were compared.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"41 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NbC-BASED CERMET PRODUCTION COMPARISON: L-PBF ADDITIVE MANUFACTURING VERSUS CONVENTIONAL LPS POWDER METALLURGY\",\"authors\":\"Fabio Miranda, Marcelo Otavio Dos Santos, Daniel Rodrigues, Rodrigo Santiago Coelho, Gilmar Ferreira Batalha\",\"doi\":\"10.17222/mit.2023.972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The production of carbide parts (cermet) by additive manufacturing, such as laser powder bed fusion (L-PBF), has been a great challenge due to the complex optimization of process parameters to improve density, porosity, microcracks or abnormal growth of grains and obtain a microstructure as homogeneous as possible. This work aims to compare the evolution of the microstructure when using the conventional route of powder metallurgy, i.e., liquid phase sintering (LPS) with the L-PBF direct additive manufacturing process, considering the NbC-based carbide material. Sample compositions were prepared in w/%, samples were compacted under 50–125 MPa, without polymeric binders, and they were sintered under a vacuum at temperatures of 1330 °C and 1370 °C. For the L-PBF process, a vibrating device made it possible to improve the fluidity of the mixtures of three alloys, NbC–30Co, NbC–30Ni and NbC–30(Co, Ni). The mixtures exhibited low sphericity, low fluidity and compressibility, which were improved with a roller compactor. Thin powder mixture deposition layers were evenly applied and well distributed across the powder bed to avoid defects and cracks during sintering. The L-PBF process parameters varied including a power of 50–125 W and a laser scanning speed of 25–125 mm·s–1. Different microstructures, identified with a light microscope (LM) and a scanning electron microscope (SEM), and properties obtained with the two processes, direct (L–PBF) and indirect sintering (LPS), were compared.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.972\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17222/mit.2023.972","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光粉末床熔合(L-PBF)等增材制造方法生产硬质合金零件(金属陶瓷)一直是一个巨大的挑战,因为需要对工艺参数进行复杂的优化,以改善密度、孔隙率、微裂纹或晶粒的异常生长,并获得尽可能均匀的微观结构。本研究旨在比较传统粉末冶金路线,即液相烧结(LPS)与L-PBF直接增材制造工艺在考虑nbc基碳化物材料的情况下,微观结构的演变。样品组成为w/%,样品在50-125 MPa下压实,不含高分子粘合剂,在1330℃和1370℃的真空条件下烧结。在L-PBF工艺中,采用振动装置改善了NbC-30Co、NbC-30Ni和NbC-30 (Co, Ni)三种合金混合物的流动性。混合料具有球形度低、流动性和可压缩性差的特点,用压实机对其进行了改善。在粉末床上均匀分布薄的混合粉末沉积层,避免了烧结过程中的缺陷和裂纹。L-PBF工艺参数为50 ~ 125 W,激光扫描速度25 ~ 125 mm·s-1。用光学显微镜(LM)和扫描电镜(SEM)对不同的显微结构进行了表征,并对直接烧结(L-PBF)和间接烧结(LPS)两种工艺所获得的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NbC-BASED CERMET PRODUCTION COMPARISON: L-PBF ADDITIVE MANUFACTURING VERSUS CONVENTIONAL LPS POWDER METALLURGY
The production of carbide parts (cermet) by additive manufacturing, such as laser powder bed fusion (L-PBF), has been a great challenge due to the complex optimization of process parameters to improve density, porosity, microcracks or abnormal growth of grains and obtain a microstructure as homogeneous as possible. This work aims to compare the evolution of the microstructure when using the conventional route of powder metallurgy, i.e., liquid phase sintering (LPS) with the L-PBF direct additive manufacturing process, considering the NbC-based carbide material. Sample compositions were prepared in w/%, samples were compacted under 50–125 MPa, without polymeric binders, and they were sintered under a vacuum at temperatures of 1330 °C and 1370 °C. For the L-PBF process, a vibrating device made it possible to improve the fluidity of the mixtures of three alloys, NbC–30Co, NbC–30Ni and NbC–30(Co, Ni). The mixtures exhibited low sphericity, low fluidity and compressibility, which were improved with a roller compactor. Thin powder mixture deposition layers were evenly applied and well distributed across the powder bed to avoid defects and cracks during sintering. The L-PBF process parameters varied including a power of 50–125 W and a laser scanning speed of 25–125 mm·s–1. Different microstructures, identified with a light microscope (LM) and a scanning electron microscope (SEM), and properties obtained with the two processes, direct (L–PBF) and indirect sintering (LPS), were compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
期刊最新文献
SUSTAINABLE AND STRATEGIC SOFT-MAGNETIC Fe-Si-Al ALLOYS PRODUCED BY SECONDARY METALLURGY INFLUENCE OF NICKEL ON THE MICROSTRUCTURAL EVOLUTION AND MECHANICAL PROPERTIES OF LM6-ALLOY-BASED FUNCTIONALLY GRADED COMPOSITE TUBES EFFECT OF ELECTROCHEMICAL PROCESS PARAMETERS ON THE HASTELLOY C-276 ALLOY FOR MACHINING SPEED AND SURFACE-CORROSION FACTOR OPTIMUM DESIGN OF A PERMANENT-MAGNET-BASED SELF-CHARGING DEVICE FOR A SMARTPHONE EFFECT OF STEEL’S THERMAL CONDITION ON THE TRANSFORMATION TEMPERATURES OF TWO HOT-WORK TOOL STEELS WITH INCREASED THERMAL CONDUCTIVITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1