动态异构图的DyHATR性能评价

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2023-09-13 DOI:10.5614/itbj.ict.res.appl.2023.17.2.7
Nasy`an Taufiq Al Ghifari, Gusti Ayu Putri Saptawati, Masayu Leylia Khodra, Benhard Sitohang
{"title":"动态异构图的DyHATR性能评价","authors":"Nasy`an Taufiq Al Ghifari, Gusti Ayu Putri Saptawati, Masayu Leylia Khodra, Benhard Sitohang","doi":"10.5614/itbj.ict.res.appl.2023.17.2.7","DOIUrl":null,"url":null,"abstract":"Dynamic heterogeneous graphs can represent real-world networks. Predicting links in these graphs is more complicated than in static graphs. Until now, research interest of link prediction has focused on static heterogeneous graphs or dynamically homogeneous graphs. A link prediction technique combining temporal RNN and hierarchical attention has recently emerged, called DyHATR. This method is claimed to be able to work on dynamic heterogeneous graphs by testing them on four publicly available data sets (Twitter, Math-Overflow, Ecomm, and Alibaba). However, after further analysis, it turned out that the four data sets did not meet the criteria of dynamic heterogeneous graphs. In the present work, we evaluated the performance of DyHATR on dynamic heterogeneous graphs. We conducted experiments with DyHATR based on the Yelp data set represented as a dynamic heterogeneous graph consisting of homogeneous subgraphs. The results show that DyHATR can be applied to identify link prediction on dynamic heterogeneous graphs by simultaneously capturing heterogeneous information and evolutionary patterns, and then considering them to carry out link predicition. Compared to the baseline method, the accuracy achieved by DyHATR is competitive, although the results can still be improved.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs\",\"authors\":\"Nasy`an Taufiq Al Ghifari, Gusti Ayu Putri Saptawati, Masayu Leylia Khodra, Benhard Sitohang\",\"doi\":\"10.5614/itbj.ict.res.appl.2023.17.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic heterogeneous graphs can represent real-world networks. Predicting links in these graphs is more complicated than in static graphs. Until now, research interest of link prediction has focused on static heterogeneous graphs or dynamically homogeneous graphs. A link prediction technique combining temporal RNN and hierarchical attention has recently emerged, called DyHATR. This method is claimed to be able to work on dynamic heterogeneous graphs by testing them on four publicly available data sets (Twitter, Math-Overflow, Ecomm, and Alibaba). However, after further analysis, it turned out that the four data sets did not meet the criteria of dynamic heterogeneous graphs. In the present work, we evaluated the performance of DyHATR on dynamic heterogeneous graphs. We conducted experiments with DyHATR based on the Yelp data set represented as a dynamic heterogeneous graph consisting of homogeneous subgraphs. The results show that DyHATR can be applied to identify link prediction on dynamic heterogeneous graphs by simultaneously capturing heterogeneous information and evolutionary patterns, and then considering them to carry out link predicition. Compared to the baseline method, the accuracy achieved by DyHATR is competitive, although the results can still be improved.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2023.17.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2023.17.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

动态异构图可以表示现实世界的网络。在这些图中预测链接比在静态图中预测链接要复杂得多。迄今为止,链路预测的研究兴趣主要集中在静态异构图和动态同构图上。最近出现了一种结合时间RNN和层次注意的链接预测技术,称为DyHATR。据称,通过在四个公开可用的数据集(Twitter、Math-Overflow、Ecomm和Alibaba)上进行测试,该方法能够处理动态异构图。然而,经过进一步分析,发现这四个数据集都不符合动态异构图的标准。在本工作中,我们评估了DyHATR在动态异构图上的性能。我们基于Yelp数据集进行了DyHATR实验,该数据集表示为由同质子图组成的动态异构图。结果表明,DyHATR可以同时捕获异构信息和进化模式,并结合它们进行链接预测,从而实现动态异构图的链接预测。与基线方法相比,DyHATR获得的精度具有竞争力,尽管结果仍然可以改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs
Dynamic heterogeneous graphs can represent real-world networks. Predicting links in these graphs is more complicated than in static graphs. Until now, research interest of link prediction has focused on static heterogeneous graphs or dynamically homogeneous graphs. A link prediction technique combining temporal RNN and hierarchical attention has recently emerged, called DyHATR. This method is claimed to be able to work on dynamic heterogeneous graphs by testing them on four publicly available data sets (Twitter, Math-Overflow, Ecomm, and Alibaba). However, after further analysis, it turned out that the four data sets did not meet the criteria of dynamic heterogeneous graphs. In the present work, we evaluated the performance of DyHATR on dynamic heterogeneous graphs. We conducted experiments with DyHATR based on the Yelp data set represented as a dynamic heterogeneous graph consisting of homogeneous subgraphs. The results show that DyHATR can be applied to identify link prediction on dynamic heterogeneous graphs by simultaneously capturing heterogeneous information and evolutionary patterns, and then considering them to carry out link predicition. Compared to the baseline method, the accuracy achieved by DyHATR is competitive, although the results can still be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1