跨临界加速船在浅水中的阻力

IF 1.4 Q3 ENGINEERING, MARINE Ship Technology Research Pub Date : 2023-09-13 DOI:10.1080/09377255.2023.2252232
Momchil Terziev, Yihan Liu, Zhiming Yuan, Atilla Incecik
{"title":"跨临界加速船在浅水中的阻力","authors":"Momchil Terziev, Yihan Liu, Zhiming Yuan, Atilla Incecik","doi":"10.1080/09377255.2023.2252232","DOIUrl":null,"url":null,"abstract":"The acceleration resistance of a vessel advancing in shallow water is investigated. Four acceleration intensities and two water depths are modelled using the CFD and potential flow methods. The results show a pronounced peak in resistance exists near the critical depth Froude number, but its location and magnitude are sensitive to the acceleration intensity and water depth. Excellent agreement between the results obtained from the CFD and potential flow methods is found in the low and high depth Froude number ranges regardless of water depth or acceleration, indicating that linear and unsteady methods can provide robust results at a low cost in those ranges. The magnitude of the resistance peak and its position are sensitive to nonlinear effects, evidenced by slight disagreements between the two adopted methodologies. The variation in the results produced by the two solvers is found to be sensitive to the parameters investigated.","PeriodicalId":51883,"journal":{"name":"Ship Technology Research","volume":"36 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The resistance of a trans-critically accelerating ship in shallow water\",\"authors\":\"Momchil Terziev, Yihan Liu, Zhiming Yuan, Atilla Incecik\",\"doi\":\"10.1080/09377255.2023.2252232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acceleration resistance of a vessel advancing in shallow water is investigated. Four acceleration intensities and two water depths are modelled using the CFD and potential flow methods. The results show a pronounced peak in resistance exists near the critical depth Froude number, but its location and magnitude are sensitive to the acceleration intensity and water depth. Excellent agreement between the results obtained from the CFD and potential flow methods is found in the low and high depth Froude number ranges regardless of water depth or acceleration, indicating that linear and unsteady methods can provide robust results at a low cost in those ranges. The magnitude of the resistance peak and its position are sensitive to nonlinear effects, evidenced by slight disagreements between the two adopted methodologies. The variation in the results produced by the two solvers is found to be sensitive to the parameters investigated.\",\"PeriodicalId\":51883,\"journal\":{\"name\":\"Ship Technology Research\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ship Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09377255.2023.2252232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ship Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09377255.2023.2252232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

研究了船舶在浅水中前进时的加速度阻力。利用CFD和势流方法模拟了4种加速度强度和2种水深。结果表明,在临界深度弗劳德数附近存在明显的阻力峰值,但其位置和大小对加速度强度和水深敏感。无论水深或加速度如何,CFD和势流方法在低深度和高深度弗劳德数范围内得到的结果非常一致,这表明线性和非定常方法可以在这些范围内以低成本提供可靠的结果。电阻峰值的大小及其位置对非线性效应很敏感,这可以从两种方法的细微差异中得到证明。发现两个求解器产生的结果的变化对所研究的参数很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The resistance of a trans-critically accelerating ship in shallow water
The acceleration resistance of a vessel advancing in shallow water is investigated. Four acceleration intensities and two water depths are modelled using the CFD and potential flow methods. The results show a pronounced peak in resistance exists near the critical depth Froude number, but its location and magnitude are sensitive to the acceleration intensity and water depth. Excellent agreement between the results obtained from the CFD and potential flow methods is found in the low and high depth Froude number ranges regardless of water depth or acceleration, indicating that linear and unsteady methods can provide robust results at a low cost in those ranges. The magnitude of the resistance peak and its position are sensitive to nonlinear effects, evidenced by slight disagreements between the two adopted methodologies. The variation in the results produced by the two solvers is found to be sensitive to the parameters investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ship Technology Research
Ship Technology Research ENGINEERING, MARINE-
CiteScore
4.90
自引率
4.50%
发文量
10
期刊最新文献
Measurements of steady manoeuvring forces and moments over an axisymmetric body with appendages in a wind tunnel Practical ship afterbody optimization by multifidelity techniques Unsteady ship–bank interaction: a comparison between experimental and computational predictions A new power prediction method using ship in-service data: a case study on a general cargo ship Active flow control applied to a ship rudder model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1