从栅极驱动器输出电压估计igbt结温和负载电流

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEJ Journal of Industry Applications Pub Date : 2023-05-01 DOI:10.1541/ieejjia.22007728
Hiromu Yamasaki, Katsuhiro Hata, Makoto Takamiya
{"title":"从栅极驱动器输出电压估计igbt结温和负载电流","authors":"Hiromu Yamasaki, Katsuhiro Hata, Makoto Takamiya","doi":"10.1541/ieejjia.22007728","DOIUrl":null,"url":null,"abstract":"For the online condition monitoring of IGBTs, a new estimation method of both the junction temperature (TJ) and the load current (IL) of IGBTs using a momentary high-Z gate driving (MHZGD) from the output voltage (VOUT) of the gate driver is proposed, which can be integrated into the gate driver ICs. TJ is estimated from VOUT difference during and after the MHZGD period, and IL is estimated from VOUT during MHZGD. In the 110 switching measurements at 11 different TJ's from 25 °C to 125 °C and 10 different IL's from 12.5 A to 80 A for each of the three IGBTs, TJ and IL estimation errors in a low test cost parameter determination method are + 4.9 °C / − 8.4 °C and + 1.1 A / − 4.3 A, respectively. In contrast, TJ and IL estimation errors in a parameter determination method with small error are + 4.9 °C / − 8.1 °C and + 1.0 A / − 1.8 A, respectively.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"22 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Both Junction Temperature and Load Current of IGBTs from Output Voltage of Gate Driver\",\"authors\":\"Hiromu Yamasaki, Katsuhiro Hata, Makoto Takamiya\",\"doi\":\"10.1541/ieejjia.22007728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the online condition monitoring of IGBTs, a new estimation method of both the junction temperature (TJ) and the load current (IL) of IGBTs using a momentary high-Z gate driving (MHZGD) from the output voltage (VOUT) of the gate driver is proposed, which can be integrated into the gate driver ICs. TJ is estimated from VOUT difference during and after the MHZGD period, and IL is estimated from VOUT during MHZGD. In the 110 switching measurements at 11 different TJ's from 25 °C to 125 °C and 10 different IL's from 12.5 A to 80 A for each of the three IGBTs, TJ and IL estimation errors in a low test cost parameter determination method are + 4.9 °C / − 8.4 °C and + 1.1 A / − 4.3 A, respectively. In contrast, TJ and IL estimation errors in a parameter determination method with small error are + 4.9 °C / − 8.1 °C and + 1.0 A / − 1.8 A, respectively.\",\"PeriodicalId\":45552,\"journal\":{\"name\":\"IEEJ Journal of Industry Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.22007728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22007728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对igbt的在线状态监测,提出了一种利用瞬时高z栅极驱动(MHZGD)从栅极驱动器输出电压(VOUT)估计igbt结温(TJ)和负载电流(IL)的新方法,该方法可集成到栅极驱动集成电路中。TJ由MHZGD期间和之后的VOUT差估计,IL由MHZGD期间的VOUT估计。三种igbt分别在25°C至125°C的11种不同TJ和12.5 A至80 A的10种不同IL下进行了110次开关测量,在低测试成本参数确定方法中,TJ和IL估计误差分别为+ 4.9°C /−8.4°C和+ 1.1 A /−4.3 A。相比之下,小误差参数确定方法的TJ和IL估计误差分别为+ 4.9°C /−8.1°C和+ 1.0 a /−1.8 a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Both Junction Temperature and Load Current of IGBTs from Output Voltage of Gate Driver
For the online condition monitoring of IGBTs, a new estimation method of both the junction temperature (TJ) and the load current (IL) of IGBTs using a momentary high-Z gate driving (MHZGD) from the output voltage (VOUT) of the gate driver is proposed, which can be integrated into the gate driver ICs. TJ is estimated from VOUT difference during and after the MHZGD period, and IL is estimated from VOUT during MHZGD. In the 110 switching measurements at 11 different TJ's from 25 °C to 125 °C and 10 different IL's from 12.5 A to 80 A for each of the three IGBTs, TJ and IL estimation errors in a low test cost parameter determination method are + 4.9 °C / − 8.4 °C and + 1.1 A / − 4.3 A, respectively. In contrast, TJ and IL estimation errors in a parameter determination method with small error are + 4.9 °C / − 8.1 °C and + 1.0 A / − 1.8 A, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEJ Journal of Industry Applications
IEEJ Journal of Industry Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.80
自引率
17.60%
发文量
71
期刊介绍: IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion    Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications:     Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).
期刊最新文献
IEEJ Journal of Industry Applications Output Voltage Precise Tracking Control for Boost Converters Based on Noncausal and Nonlinear Feedforward Control IEEJ Journal of Industry Applications Study on Application of Amorphous Metal to New Single-Phase Synchronous Motors Driven at High Frequencies Operation Characteristics of Discontinuous Current Mode for a Dual-Active-Bridge AC-DC Converter with an Active Energy Buffer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1