基于Si-IGBT/SiC-MOSFET驱动控制的毫米波数字无线系统高速低延迟传输

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEJ Journal of Industry Applications Pub Date : 2023-05-01 DOI:10.1541/ieejjia.22007552
Koji Akita, Yukako Tsutsumi, Hiroyuki Kitagawa, Kentaro Suzuki, Ryosuke Saito, Yoshihiro Tawada
{"title":"基于Si-IGBT/SiC-MOSFET驱动控制的毫米波数字无线系统高速低延迟传输","authors":"Koji Akita, Yukako Tsutsumi, Hiroyuki Kitagawa, Kentaro Suzuki, Ryosuke Saito, Yoshihiro Tawada","doi":"10.1541/ieejjia.22007552","DOIUrl":null,"url":null,"abstract":"Wireless transmission of gate control signals is expected to improve insulation performance and design flexibility. This paper proposes high-speed and low-latency transmission by millimeter wave digital wireless system for Si-IGBT/SiC-MOSFET driver control. High-speed and low-latency transmission is realized by continuous transmission using the millimeter wave radio. Solutions for handling errors and reliability are also presented. The effectiveness of the proposed system is demonstrated by evaluating the transmission latency, the effect of wireless errors using a real-time simulator, and its connection to an actual inverter.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"7 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Speed and Low-Latency Transmission by Millimeter-Wave Digital Wireless System for Si-IGBT/SiC-MOSFET Driver Control\",\"authors\":\"Koji Akita, Yukako Tsutsumi, Hiroyuki Kitagawa, Kentaro Suzuki, Ryosuke Saito, Yoshihiro Tawada\",\"doi\":\"10.1541/ieejjia.22007552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless transmission of gate control signals is expected to improve insulation performance and design flexibility. This paper proposes high-speed and low-latency transmission by millimeter wave digital wireless system for Si-IGBT/SiC-MOSFET driver control. High-speed and low-latency transmission is realized by continuous transmission using the millimeter wave radio. Solutions for handling errors and reliability are also presented. The effectiveness of the proposed system is demonstrated by evaluating the transmission latency, the effect of wireless errors using a real-time simulator, and its connection to an actual inverter.\",\"PeriodicalId\":45552,\"journal\":{\"name\":\"IEEJ Journal of Industry Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.22007552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22007552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

栅极控制信号的无线传输有望提高绝缘性能和设计灵活性。本文提出了采用毫米波数字无线系统实现Si-IGBT/SiC-MOSFET驱动控制的高速低时延传输。通过毫米波无线电波的连续传输,实现了高速低时延传输。提出了处理错误和提高可靠性的解决方案。通过实时模拟器评估传输延迟、无线误差的影响以及与实际逆变器的连接,证明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Speed and Low-Latency Transmission by Millimeter-Wave Digital Wireless System for Si-IGBT/SiC-MOSFET Driver Control
Wireless transmission of gate control signals is expected to improve insulation performance and design flexibility. This paper proposes high-speed and low-latency transmission by millimeter wave digital wireless system for Si-IGBT/SiC-MOSFET driver control. High-speed and low-latency transmission is realized by continuous transmission using the millimeter wave radio. Solutions for handling errors and reliability are also presented. The effectiveness of the proposed system is demonstrated by evaluating the transmission latency, the effect of wireless errors using a real-time simulator, and its connection to an actual inverter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEJ Journal of Industry Applications
IEEJ Journal of Industry Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.80
自引率
17.60%
发文量
71
期刊介绍: IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion    Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications:     Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).
期刊最新文献
IEEJ Journal of Industry Applications Output Voltage Precise Tracking Control for Boost Converters Based on Noncausal and Nonlinear Feedforward Control IEEJ Journal of Industry Applications Study on Application of Amorphous Metal to New Single-Phase Synchronous Motors Driven at High Frequencies Operation Characteristics of Discontinuous Current Mode for a Dual-Active-Bridge AC-DC Converter with an Active Energy Buffer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1