{"title":"试验离心机振动与气动分析及优化设计","authors":"Chunyan Deng, Lidong He, Zhifu Tan, Xingyun Jia","doi":"10.3390/vibration6040054","DOIUrl":null,"url":null,"abstract":"Taking a type of test centrifuge as the research object, the finite element model of the test centrifuge was established, the vibration characteristics and aerodynamic performance of the test centrifuge were analyzed, and a structural optimization design of the test centrifuge was carried out. In this paper, the load was applied according to the actual working condition of a type of test centrifuge. The vibration of the mounting seat of the test centrifuge was analyzed, and the structure of the mounting seat was improved. After improvement, the vibration of the mounting seat was 77.38% lower than that of the original mounting seat. Then, the aerodynamic analysis of the test centrifuge was carried out. The analysis results show that the test centrifuge moved more smoothly under the whole-package shell and the fairing, the resistance decreased, and the shaft load decreased. Finally, the fairing of the test centrifuge was optimized. The analysis shows that an increase in the width of the fairing can reduce the resistance coefficient, which is helpful to the stability of the test centrifuge during operation and reduces the unbalanced response of the system caused by air resistance.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"34 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration and Aerodynamic Analysis and Optimization Design of a Test Centrifuge\",\"authors\":\"Chunyan Deng, Lidong He, Zhifu Tan, Xingyun Jia\",\"doi\":\"10.3390/vibration6040054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking a type of test centrifuge as the research object, the finite element model of the test centrifuge was established, the vibration characteristics and aerodynamic performance of the test centrifuge were analyzed, and a structural optimization design of the test centrifuge was carried out. In this paper, the load was applied according to the actual working condition of a type of test centrifuge. The vibration of the mounting seat of the test centrifuge was analyzed, and the structure of the mounting seat was improved. After improvement, the vibration of the mounting seat was 77.38% lower than that of the original mounting seat. Then, the aerodynamic analysis of the test centrifuge was carried out. The analysis results show that the test centrifuge moved more smoothly under the whole-package shell and the fairing, the resistance decreased, and the shaft load decreased. Finally, the fairing of the test centrifuge was optimized. The analysis shows that an increase in the width of the fairing can reduce the resistance coefficient, which is helpful to the stability of the test centrifuge during operation and reduces the unbalanced response of the system caused by air resistance.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6040054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Vibration and Aerodynamic Analysis and Optimization Design of a Test Centrifuge
Taking a type of test centrifuge as the research object, the finite element model of the test centrifuge was established, the vibration characteristics and aerodynamic performance of the test centrifuge were analyzed, and a structural optimization design of the test centrifuge was carried out. In this paper, the load was applied according to the actual working condition of a type of test centrifuge. The vibration of the mounting seat of the test centrifuge was analyzed, and the structure of the mounting seat was improved. After improvement, the vibration of the mounting seat was 77.38% lower than that of the original mounting seat. Then, the aerodynamic analysis of the test centrifuge was carried out. The analysis results show that the test centrifuge moved more smoothly under the whole-package shell and the fairing, the resistance decreased, and the shaft load decreased. Finally, the fairing of the test centrifuge was optimized. The analysis shows that an increase in the width of the fairing can reduce the resistance coefficient, which is helpful to the stability of the test centrifuge during operation and reduces the unbalanced response of the system caused by air resistance.