{"title":"案例研究:穿孔波纹内衬直通穿孔管消声器的噪声衰减性能","authors":"Zhenhua Hou, Qigan Wang, Tengfei Si, Shiqiang Zhang","doi":"10.3397/1/377123","DOIUrl":null,"url":null,"abstract":"Noise of internal combustion engine is the main source of noise pollution, and mufflers are the main means to reduce exhaust noise of internal combustion engine. In the process of improving the acoustic performance of the exhaust muffler based on the three-dimensional numerical method, the influence of the high speed and high temperature airflow discharged by the engine in the actual working process on the acoustic performance of the exhaust muffler is often ignored, which leads to the obvious deviation between the predicted results and the actual situation. In this paper, based on the structural optimization design of the straight-through perforated pipe resistance muffler, the noise characteristics of the straight-through perforated pipe resistance muffler with perforated corrugated lining was analyzed considering the airflow velocity and temperature inside the muffler. The influence of temperature and velocity fields on the acoustic performance of muffler was studied by using numerical simulation method, which takes the solution results inside muffler as boundary conditions of sound field analysis. The influence of changing the internal structure of muffler on the aerodynamic performance of muffler was discussed, and the pressure loss is analyzed. The research has shown that adding perforated corrugated lining inside muffler could effectively improve the transmission loss of muffler and the noise reduction performance of prototype straight-through perforated pipe-resistant muffler.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":"46 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case study: Noise attenuating performance of perforated corrugated lined straight-through perforated pipe-resistant muffler\",\"authors\":\"Zhenhua Hou, Qigan Wang, Tengfei Si, Shiqiang Zhang\",\"doi\":\"10.3397/1/377123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise of internal combustion engine is the main source of noise pollution, and mufflers are the main means to reduce exhaust noise of internal combustion engine. In the process of improving the acoustic performance of the exhaust muffler based on the three-dimensional numerical method, the influence of the high speed and high temperature airflow discharged by the engine in the actual working process on the acoustic performance of the exhaust muffler is often ignored, which leads to the obvious deviation between the predicted results and the actual situation. In this paper, based on the structural optimization design of the straight-through perforated pipe resistance muffler, the noise characteristics of the straight-through perforated pipe resistance muffler with perforated corrugated lining was analyzed considering the airflow velocity and temperature inside the muffler. The influence of temperature and velocity fields on the acoustic performance of muffler was studied by using numerical simulation method, which takes the solution results inside muffler as boundary conditions of sound field analysis. The influence of changing the internal structure of muffler on the aerodynamic performance of muffler was discussed, and the pressure loss is analyzed. The research has shown that adding perforated corrugated lining inside muffler could effectively improve the transmission loss of muffler and the noise reduction performance of prototype straight-through perforated pipe-resistant muffler.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3397/1/377123\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3397/1/377123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Case study: Noise attenuating performance of perforated corrugated lined straight-through perforated pipe-resistant muffler
Noise of internal combustion engine is the main source of noise pollution, and mufflers are the main means to reduce exhaust noise of internal combustion engine. In the process of improving the acoustic performance of the exhaust muffler based on the three-dimensional numerical method, the influence of the high speed and high temperature airflow discharged by the engine in the actual working process on the acoustic performance of the exhaust muffler is often ignored, which leads to the obvious deviation between the predicted results and the actual situation. In this paper, based on the structural optimization design of the straight-through perforated pipe resistance muffler, the noise characteristics of the straight-through perforated pipe resistance muffler with perforated corrugated lining was analyzed considering the airflow velocity and temperature inside the muffler. The influence of temperature and velocity fields on the acoustic performance of muffler was studied by using numerical simulation method, which takes the solution results inside muffler as boundary conditions of sound field analysis. The influence of changing the internal structure of muffler on the aerodynamic performance of muffler was discussed, and the pressure loss is analyzed. The research has shown that adding perforated corrugated lining inside muffler could effectively improve the transmission loss of muffler and the noise reduction performance of prototype straight-through perforated pipe-resistant muffler.
期刊介绍:
NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE).
NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes.
INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ:
Provides the opportunity to reach a global audience of NCE professionals, academics, and students;
Enhances the prestige of your work;
Validates your work by formal peer review.