Nezel Ann Lomoljo-Bantayan, Wella T. Tatil, Frandel Louis S. Dagoc, Annielyn D. Tampus, Ruben Jr. F. Amparado
{"title":"菲律宾东部Misamis macjalar湾沿岸红树林碳储量评估","authors":"Nezel Ann Lomoljo-Bantayan, Wella T. Tatil, Frandel Louis S. Dagoc, Annielyn D. Tampus, Ruben Jr. F. Amparado","doi":"10.21833/ijaas.2023.10.004","DOIUrl":null,"url":null,"abstract":"Mangrove ecosystems are widely recognized for their crucial role in mitigating climate change through carbon storage and sequestration services. These ecosystems possess significant carbon reservoirs, particularly in their soils. Nevertheless, the unremitting development of coastal areas and alterations in land use constitute impending threats to these ecosystems, endangering the continuity of their invaluable services. Recognizing the crucial role of mangrove ecosystems in mitigating climate change, this study meticulously evaluates the cumulative carbon stocks encompassing the aboveground and soil components within three mangrove-protected areas in the Macajalar Bay region of Misamis Oriental. The study adheres to a logical structure with causal connections between statements, presents information in clear and concise sentences, and follows conventional academic writing formatting. Vocabulary is precise and avoids biased or emotional language. The text adheres to grammatical correctness, consistently uses technical terms, and employs a formal register. The study is free from filler words and employs a passive tone and impersonal construction. Additionally, the text features a consistent footnote style and accurately cites sources. The research findings show that soil carbon makes up a significant portion, ranging from 40% to 90%, of the total carbon stocks in the three study areas. This emphasizes the crucial function of mangrove soils as carbon repositories. Furthermore, the study establishes a direct connection between the age of mangrove stands and the occurrence of large-girth trees, both of which add to the rise in carbon stocks. Despite their substantial carbon storage capacity, mangrove forests in the Macajalar Bay region are still facing encroachments due to urbanization pressures. This assessment of carbon stocks in these coastal ecosystems plays a critical role in developing localized strategies that align with the United Nations Framework Convention on Climate Change's (UNFCCC) REDD+ initiatives, thus preventing further degradation of these vital carbon sinks.","PeriodicalId":46663,"journal":{"name":"International Journal of Advanced and Applied Sciences","volume":"161 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon stock assessment of mangrove forests along Macajalar Bay, Misamis Oriental, Philippines\",\"authors\":\"Nezel Ann Lomoljo-Bantayan, Wella T. Tatil, Frandel Louis S. Dagoc, Annielyn D. Tampus, Ruben Jr. F. Amparado\",\"doi\":\"10.21833/ijaas.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mangrove ecosystems are widely recognized for their crucial role in mitigating climate change through carbon storage and sequestration services. These ecosystems possess significant carbon reservoirs, particularly in their soils. Nevertheless, the unremitting development of coastal areas and alterations in land use constitute impending threats to these ecosystems, endangering the continuity of their invaluable services. Recognizing the crucial role of mangrove ecosystems in mitigating climate change, this study meticulously evaluates the cumulative carbon stocks encompassing the aboveground and soil components within three mangrove-protected areas in the Macajalar Bay region of Misamis Oriental. The study adheres to a logical structure with causal connections between statements, presents information in clear and concise sentences, and follows conventional academic writing formatting. Vocabulary is precise and avoids biased or emotional language. The text adheres to grammatical correctness, consistently uses technical terms, and employs a formal register. The study is free from filler words and employs a passive tone and impersonal construction. Additionally, the text features a consistent footnote style and accurately cites sources. The research findings show that soil carbon makes up a significant portion, ranging from 40% to 90%, of the total carbon stocks in the three study areas. This emphasizes the crucial function of mangrove soils as carbon repositories. Furthermore, the study establishes a direct connection between the age of mangrove stands and the occurrence of large-girth trees, both of which add to the rise in carbon stocks. Despite their substantial carbon storage capacity, mangrove forests in the Macajalar Bay region are still facing encroachments due to urbanization pressures. This assessment of carbon stocks in these coastal ecosystems plays a critical role in developing localized strategies that align with the United Nations Framework Convention on Climate Change's (UNFCCC) REDD+ initiatives, thus preventing further degradation of these vital carbon sinks.\",\"PeriodicalId\":46663,\"journal\":{\"name\":\"International Journal of Advanced and Applied Sciences\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21833/ijaas.2023.10.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21833/ijaas.2023.10.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Carbon stock assessment of mangrove forests along Macajalar Bay, Misamis Oriental, Philippines
Mangrove ecosystems are widely recognized for their crucial role in mitigating climate change through carbon storage and sequestration services. These ecosystems possess significant carbon reservoirs, particularly in their soils. Nevertheless, the unremitting development of coastal areas and alterations in land use constitute impending threats to these ecosystems, endangering the continuity of their invaluable services. Recognizing the crucial role of mangrove ecosystems in mitigating climate change, this study meticulously evaluates the cumulative carbon stocks encompassing the aboveground and soil components within three mangrove-protected areas in the Macajalar Bay region of Misamis Oriental. The study adheres to a logical structure with causal connections between statements, presents information in clear and concise sentences, and follows conventional academic writing formatting. Vocabulary is precise and avoids biased or emotional language. The text adheres to grammatical correctness, consistently uses technical terms, and employs a formal register. The study is free from filler words and employs a passive tone and impersonal construction. Additionally, the text features a consistent footnote style and accurately cites sources. The research findings show that soil carbon makes up a significant portion, ranging from 40% to 90%, of the total carbon stocks in the three study areas. This emphasizes the crucial function of mangrove soils as carbon repositories. Furthermore, the study establishes a direct connection between the age of mangrove stands and the occurrence of large-girth trees, both of which add to the rise in carbon stocks. Despite their substantial carbon storage capacity, mangrove forests in the Macajalar Bay region are still facing encroachments due to urbanization pressures. This assessment of carbon stocks in these coastal ecosystems plays a critical role in developing localized strategies that align with the United Nations Framework Convention on Climate Change's (UNFCCC) REDD+ initiatives, thus preventing further degradation of these vital carbon sinks.