施瓦茨纳米晶体的强化-软化转变和最大强度

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-06-01 DOI:10.1016/j.nanoms.2023.09.006
Hanzheng Xing , Jiaxi Jiang , Yujia Wang , Yongpan Zeng , Xiaoyan Li
{"title":"施瓦茨纳米晶体的强化-软化转变和最大强度","authors":"Hanzheng Xing ,&nbsp;Jiaxi Jiang ,&nbsp;Yujia Wang ,&nbsp;Yongpan Zeng ,&nbsp;Xiaoyan Li","doi":"10.1016/j.nanoms.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, a Schwarz crystal structure with curved grain boundaries (GBs) constrained by twin-boundary (TB) networks was discovered in nanocrystalline Cu through experiments and atomistic simulations. Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability. However, the grain-size effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown. Here, we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals. Our simulations showed that similar to regular nanocrystals, Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size. The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals, leading to a maximum strength higher than that of regular nanocrystals. Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration (or detwinning) and annihilation of GBs, rather than GB-mediated processes (including GB migration, sliding and diffusion) dominating the softening in regular nanocrystals. Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals, the GB-mediated processes in Schwarz nanocrystals are suppressed, which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks. The smaller critical grain size arises from the suppression of GB-mediated processes.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000417/pdfft?md5=ce399eb35ebb4616780ee4e6103e15fb&pid=1-s2.0-S2589965123000417-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strengthening-softening transition and maximum strength in Schwarz nanocrystals\",\"authors\":\"Hanzheng Xing ,&nbsp;Jiaxi Jiang ,&nbsp;Yujia Wang ,&nbsp;Yongpan Zeng ,&nbsp;Xiaoyan Li\",\"doi\":\"10.1016/j.nanoms.2023.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, a Schwarz crystal structure with curved grain boundaries (GBs) constrained by twin-boundary (TB) networks was discovered in nanocrystalline Cu through experiments and atomistic simulations. Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability. However, the grain-size effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown. Here, we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals. Our simulations showed that similar to regular nanocrystals, Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size. The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals, leading to a maximum strength higher than that of regular nanocrystals. Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration (or detwinning) and annihilation of GBs, rather than GB-mediated processes (including GB migration, sliding and diffusion) dominating the softening in regular nanocrystals. Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals, the GB-mediated processes in Schwarz nanocrystals are suppressed, which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks. The smaller critical grain size arises from the suppression of GB-mediated processes.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000417/pdfft?md5=ce399eb35ebb4616780ee4e6103e15fb&pid=1-s2.0-S2589965123000417-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000417\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000417","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

最近,通过实验和原子模拟,在纳米晶铜中发现了一种受孪晶边界(TB)网络约束的具有弯曲晶界(GB)的施瓦茨晶体结构。具有纳米级施瓦茨晶体的纳米晶铜具有高强度和优异的热稳定性。然而,施瓦茨纳米晶体的晶粒尺寸效应和相关变形机制仍然未知。在此,我们进行了大规模原子模拟,以研究具有施瓦茨晶体的纳米晶铜的变形行为和晶粒尺寸效应。模拟结果表明,与普通纳米晶体类似,随着晶粒尺寸的减小,施瓦茨纳米晶体也会出现强化-软化转变。施瓦茨纳米晶体的临界晶粒尺寸小于普通纳米晶体,因此其最大强度高于普通纳米晶体。我们的模拟结果表明,施瓦茨纳米晶体的软化主要源于 TB 迁移(或脱离)和 GB 的湮灭,而不是 GB 介导的过程(包括 GB 迁移、滑动和扩散)主导了普通纳米晶体的软化。对模拟数据的定量分析进一步表明,与普通纳米晶体相比,施瓦茨纳米晶体中的GB介导过程受到了抑制,这与非晶态类GB的低体积分数和TB网络的限制有关。临界晶粒尺寸较小的原因是 GB 媒介过程受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strengthening-softening transition and maximum strength in Schwarz nanocrystals

Recently, a Schwarz crystal structure with curved grain boundaries (GBs) constrained by twin-boundary (TB) networks was discovered in nanocrystalline Cu through experiments and atomistic simulations. Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability. However, the grain-size effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown. Here, we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals. Our simulations showed that similar to regular nanocrystals, Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size. The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals, leading to a maximum strength higher than that of regular nanocrystals. Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration (or detwinning) and annihilation of GBs, rather than GB-mediated processes (including GB migration, sliding and diffusion) dominating the softening in regular nanocrystals. Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals, the GB-mediated processes in Schwarz nanocrystals are suppressed, which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks. The smaller critical grain size arises from the suppression of GB-mediated processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1