基于频率分割的卷积神经网络风电叶片状态监测方法

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2023-11-01 DOI:10.1016/j.taml.2023.100479
Weijun Zhu, Yunan Wu, Zhenye Sun, Wenzhong Shen, Guangxing Guo, Jianwei Lin
{"title":"基于频率分割的卷积神经网络风电叶片状态监测方法","authors":"Weijun Zhu,&nbsp;Yunan Wu,&nbsp;Zhenye Sun,&nbsp;Wenzhong Shen,&nbsp;Guangxing Guo,&nbsp;Jianwei Lin","doi":"10.1016/j.taml.2023.100479","DOIUrl":null,"url":null,"abstract":"<div><p>Wind turbine blades are prone to failure due to high tip speed, rain, dust and so on. A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed. On the experimental measurement data, variational mode decomposition filtering and Mel spectrogram drawing are conducted first. The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network. Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients, considering the complexity of the real environment. The surfaces of Wind turbine blades are classified into four types: standard, attachments, polishing, and serrated trailing edge. The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%. In addition to support the differentiation of trained models, utilizing proper score coefficients also permit the screening of unknown types.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000508/pdfft?md5=49f235d2825c62d403a3e3aa9917f8b2&pid=1-s2.0-S2095034923000508-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A method of convolutional neural network based on frequency segmentation for monitoring the state of wind turbine blades\",\"authors\":\"Weijun Zhu,&nbsp;Yunan Wu,&nbsp;Zhenye Sun,&nbsp;Wenzhong Shen,&nbsp;Guangxing Guo,&nbsp;Jianwei Lin\",\"doi\":\"10.1016/j.taml.2023.100479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wind turbine blades are prone to failure due to high tip speed, rain, dust and so on. A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed. On the experimental measurement data, variational mode decomposition filtering and Mel spectrogram drawing are conducted first. The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network. Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients, considering the complexity of the real environment. The surfaces of Wind turbine blades are classified into four types: standard, attachments, polishing, and serrated trailing edge. The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%. In addition to support the differentiation of trained models, utilizing proper score coefficients also permit the screening of unknown types.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000508/pdfft?md5=49f235d2825c62d403a3e3aa9917f8b2&pid=1-s2.0-S2095034923000508-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000508\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

风力涡轮机叶片容易因高叶尖转速、雨水、灰尘等而发生故障。提出了一种基于风力机叶片气动噪声的表面状态检测方法。首先对实验测量数据进行变分模分解滤波和Mel谱图绘制。Mel频谱图根据频率特征分成两半,然后送入卷积神经网络。考虑到真实环境的复杂性,在原始信号上叠加高斯白噪声,并根据分数系数对输出结果进行评估。风力涡轮机叶片的表面分为四种类型:标准、附件、抛光和锯齿状后缘。对该方法进行了评价,在复杂背景条件下的检测准确率达到99.59%。除了支持训练模型的区分,利用适当的得分系数也允许筛选未知类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method of convolutional neural network based on frequency segmentation for monitoring the state of wind turbine blades

Wind turbine blades are prone to failure due to high tip speed, rain, dust and so on. A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed. On the experimental measurement data, variational mode decomposition filtering and Mel spectrogram drawing are conducted first. The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network. Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients, considering the complexity of the real environment. The surfaces of Wind turbine blades are classified into four types: standard, attachments, polishing, and serrated trailing edge. The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%. In addition to support the differentiation of trained models, utilizing proper score coefficients also permit the screening of unknown types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
A New Cyclic Cohesive Zone Model for Fatigue Damage Analysis of Welded Vessel Numerical Study of Flow and Thermal Characteristics of Pulsed Impinging Jet on a Dimpled Surface Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models Magnetically-actuated Intracorporeal Biopsy Robot Based on Kresling Origami A New Strain-Based Pentagonal Membrane Finite Element for Solid Mechanics Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1