{"title":"氧化锆从头算相变的机器学习潜力","authors":"Yuanpeng Deng, Chong Wang, Xiang Xu, Hui Li","doi":"10.1016/j.taml.2023.100481","DOIUrl":null,"url":null,"abstract":"<div><p>Zirconia has been extensively used in aerospace, military, biomedical and industrial fields due to its unusual combination of high mechanical, electrical and thermal properties. However, the fundamental and critical phase transition process of zirconia has not been well studied because of its difficult first-order phase transition with formidable energy barrier. Here, we generated a machine learning interatomic potential with <em>ab initio</em> accuracy to discover the mechanism behind all kinds of phase transition of zirconia at ambient pressure. The machine learning potential precisely characterized atomic interactions among all zirconia allotropes and liquid zirconia in a wide temperature range. We realized the challenging reversible first-order monoclinic-tetragonal and cubic-liquid phase transition processes with enhanced sampling techniques. From the thermodynamic information, we gave a better understanding of the thermal hysteresis phenomenon in martensitic monoclinic-tetragonal transition. The phase diagram of zirconia from our machine learning potential based molecular dynamics simulations corresponded well with experimental results.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000521/pdfft?md5=f70ba7ea49139490effb6fe082db679a&pid=1-s2.0-S2095034923000521-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning potential for Ab Initio phase transitions of zirconia\",\"authors\":\"Yuanpeng Deng, Chong Wang, Xiang Xu, Hui Li\",\"doi\":\"10.1016/j.taml.2023.100481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zirconia has been extensively used in aerospace, military, biomedical and industrial fields due to its unusual combination of high mechanical, electrical and thermal properties. However, the fundamental and critical phase transition process of zirconia has not been well studied because of its difficult first-order phase transition with formidable energy barrier. Here, we generated a machine learning interatomic potential with <em>ab initio</em> accuracy to discover the mechanism behind all kinds of phase transition of zirconia at ambient pressure. The machine learning potential precisely characterized atomic interactions among all zirconia allotropes and liquid zirconia in a wide temperature range. We realized the challenging reversible first-order monoclinic-tetragonal and cubic-liquid phase transition processes with enhanced sampling techniques. From the thermodynamic information, we gave a better understanding of the thermal hysteresis phenomenon in martensitic monoclinic-tetragonal transition. The phase diagram of zirconia from our machine learning potential based molecular dynamics simulations corresponded well with experimental results.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000521/pdfft?md5=f70ba7ea49139490effb6fe082db679a&pid=1-s2.0-S2095034923000521-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000521\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000521","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Machine learning potential for Ab Initio phase transitions of zirconia
Zirconia has been extensively used in aerospace, military, biomedical and industrial fields due to its unusual combination of high mechanical, electrical and thermal properties. However, the fundamental and critical phase transition process of zirconia has not been well studied because of its difficult first-order phase transition with formidable energy barrier. Here, we generated a machine learning interatomic potential with ab initio accuracy to discover the mechanism behind all kinds of phase transition of zirconia at ambient pressure. The machine learning potential precisely characterized atomic interactions among all zirconia allotropes and liquid zirconia in a wide temperature range. We realized the challenging reversible first-order monoclinic-tetragonal and cubic-liquid phase transition processes with enhanced sampling techniques. From the thermodynamic information, we gave a better understanding of the thermal hysteresis phenomenon in martensitic monoclinic-tetragonal transition. The phase diagram of zirconia from our machine learning potential based molecular dynamics simulations corresponded well with experimental results.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).