{"title":"基于DE-XGBoost的静态汉语手语识别多传感器融合方法","authors":"Xiaoyang Lu, Yanjun Liu","doi":"10.1142/s1793962325410016","DOIUrl":null,"url":null,"abstract":"Static Chinese Sign Language Recognition (SCSLR) is an important field of research in human–computer interaction and assistive technology. Traditional SCSLR methods usually rely on computer vison sensors, which are susceptible to effects such as hand shapes, lighting conditions, and occlusions, resulting in low recognition accuracy. Additionally, sensor-based SCSLR methods cannot achieve high recognition accuracy due to limited hand gesture information. In this paper, we propose a multi-sensor fusion method, using a DE–XGBoost model, to fuse the information of hand gesture and finger curvature to achieve the SCSLR, which can overcome the recognition error problems caused by insufficient sign language information. In addition, we design and implement a prototype system, which consists of a smartphone and a smart glove, to evaluate our proposed method in comparison with support vector machine (SVM), XGBoost, gcForest, and artificial neural network (ANN). Experimental results show that our proposed method achieves a better performance in terms of accuracy, robustness, and real-time processing.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":"34 42","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-sensor fusion method for static Chinese sign language recognition using DE–XGBoost\",\"authors\":\"Xiaoyang Lu, Yanjun Liu\",\"doi\":\"10.1142/s1793962325410016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static Chinese Sign Language Recognition (SCSLR) is an important field of research in human–computer interaction and assistive technology. Traditional SCSLR methods usually rely on computer vison sensors, which are susceptible to effects such as hand shapes, lighting conditions, and occlusions, resulting in low recognition accuracy. Additionally, sensor-based SCSLR methods cannot achieve high recognition accuracy due to limited hand gesture information. In this paper, we propose a multi-sensor fusion method, using a DE–XGBoost model, to fuse the information of hand gesture and finger curvature to achieve the SCSLR, which can overcome the recognition error problems caused by insufficient sign language information. In addition, we design and implement a prototype system, which consists of a smartphone and a smart glove, to evaluate our proposed method in comparison with support vector machine (SVM), XGBoost, gcForest, and artificial neural network (ANN). Experimental results show that our proposed method achieves a better performance in terms of accuracy, robustness, and real-time processing.\",\"PeriodicalId\":50871,\"journal\":{\"name\":\"Advances in Complex Systems\",\"volume\":\"34 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962325410016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962325410016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A multi-sensor fusion method for static Chinese sign language recognition using DE–XGBoost
Static Chinese Sign Language Recognition (SCSLR) is an important field of research in human–computer interaction and assistive technology. Traditional SCSLR methods usually rely on computer vison sensors, which are susceptible to effects such as hand shapes, lighting conditions, and occlusions, resulting in low recognition accuracy. Additionally, sensor-based SCSLR methods cannot achieve high recognition accuracy due to limited hand gesture information. In this paper, we propose a multi-sensor fusion method, using a DE–XGBoost model, to fuse the information of hand gesture and finger curvature to achieve the SCSLR, which can overcome the recognition error problems caused by insufficient sign language information. In addition, we design and implement a prototype system, which consists of a smartphone and a smart glove, to evaluate our proposed method in comparison with support vector machine (SVM), XGBoost, gcForest, and artificial neural network (ANN). Experimental results show that our proposed method achieves a better performance in terms of accuracy, robustness, and real-time processing.
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.