Qirong Jiao, Wenlong Liu, Dianjun Zhang, Jinbin Cao
{"title":"与纬度相关的太阳黑子数据与近地太阳风速度的关系","authors":"Qirong Jiao, Wenlong Liu, Dianjun Zhang, Jinbin Cao","doi":"10.3847/1538-4357/acfc21","DOIUrl":null,"url":null,"abstract":"Abstract Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"19 5","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed\",\"authors\":\"Qirong Jiao, Wenlong Liu, Dianjun Zhang, Jinbin Cao\",\"doi\":\"10.3847/1538-4357/acfc21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":\"19 5\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acfc21\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfc21","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed
Abstract Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.