{"title":"形状优化使用基于水平集的网格进化方法:概述和教程","authors":"Charles Dapogny, Florian Feppon","doi":"10.5802/crmath.498","DOIUrl":null,"url":null,"abstract":"This article revolves around a recent numerical framework for shape and topology optimization, which features an exact mesh of the shape at each iteration of the process, while still leaving the room for an arbitrary evolution of the latter (including changes in its topology). In a nutshell, two complementary representations of the shape are combined: on the one hand, it is meshed exactly, which allows for precise mechanical calculations based on the finite element method; on the other hand, it is described implicitly, using the level set method, which makes it possible to track its evolution in a robust way. In the first part of this work, we overview the main aspects of this numerical strategy. After a brief presentation of some necessary background material – related to shape optimization and meshing, among others – we describe the numerical schemes involved, notably when it comes to the practice of the level set method, the remeshing algorithms, and the considered optimization solver. This strategy is illustrated with 2d and 3d numerical examples in various physical contexts. In the second part of this article, we propose a simple albeit efficient python-based implementation of this framework. The code is described with a fair amount of details, and it is expected that the reader can easily elaborate upon the presented examples to tackle his own problems.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"64 8","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shape optimization using a level set based mesh evolution method: an overview and tutorial\",\"authors\":\"Charles Dapogny, Florian Feppon\",\"doi\":\"10.5802/crmath.498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article revolves around a recent numerical framework for shape and topology optimization, which features an exact mesh of the shape at each iteration of the process, while still leaving the room for an arbitrary evolution of the latter (including changes in its topology). In a nutshell, two complementary representations of the shape are combined: on the one hand, it is meshed exactly, which allows for precise mechanical calculations based on the finite element method; on the other hand, it is described implicitly, using the level set method, which makes it possible to track its evolution in a robust way. In the first part of this work, we overview the main aspects of this numerical strategy. After a brief presentation of some necessary background material – related to shape optimization and meshing, among others – we describe the numerical schemes involved, notably when it comes to the practice of the level set method, the remeshing algorithms, and the considered optimization solver. This strategy is illustrated with 2d and 3d numerical examples in various physical contexts. In the second part of this article, we propose a simple albeit efficient python-based implementation of this framework. The code is described with a fair amount of details, and it is expected that the reader can easily elaborate upon the presented examples to tackle his own problems.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"64 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.498\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.498","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Shape optimization using a level set based mesh evolution method: an overview and tutorial
This article revolves around a recent numerical framework for shape and topology optimization, which features an exact mesh of the shape at each iteration of the process, while still leaving the room for an arbitrary evolution of the latter (including changes in its topology). In a nutshell, two complementary representations of the shape are combined: on the one hand, it is meshed exactly, which allows for precise mechanical calculations based on the finite element method; on the other hand, it is described implicitly, using the level set method, which makes it possible to track its evolution in a robust way. In the first part of this work, we overview the main aspects of this numerical strategy. After a brief presentation of some necessary background material – related to shape optimization and meshing, among others – we describe the numerical schemes involved, notably when it comes to the practice of the level set method, the remeshing algorithms, and the considered optimization solver. This strategy is illustrated with 2d and 3d numerical examples in various physical contexts. In the second part of this article, we propose a simple albeit efficient python-based implementation of this framework. The code is described with a fair amount of details, and it is expected that the reader can easily elaborate upon the presented examples to tackle his own problems.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.