{"title":"受列奥纳多的三角形砌体结构启发,柔性整体分段梁的剪切和弯曲变形","authors":"Claudio Boni, Gianni Royer-Carfagni","doi":"10.1098/rspa.2023.0453","DOIUrl":null,"url":null,"abstract":"In Tabula XCI verso of Codex Atlanticus, Leonardo da Vinci presents an ingenious masonry structure composed of segments in the shape of inverted triangles. These are assembled by contact in a chain to obtain a lintel or jack arch, where they are pressed together by the thrust of the end constraints. Drawing inspiration from Leonardo’s sketches, we show that, by connecting the segments in pair through elastic tendons, this system represents a new type of flextegrity beam. In a classical flextegrity, the contact surfaces of the segments are curved conjugate profiles, imposing a pure rolling motion along properly designed pitch lines: the consequent elongation of the tendon dictates the constitutive response as a function of the relative rotation of the segments. Here, the contact is through plane surfaces, so that the kinematics, besides the relative rotation, is characterized by segmental shearing. This system is theoretically analysed and a continuum model is derived as the length of the segments becomes small. Comparisons with experiments on three-dimensional-printed prototypes confirm the theoretical findings and highlight the possible competition between rotational and sliding types of deformation. Apart from the historical value, this type of construction can be used in innovative structures or metamaterials.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shear and flexural deformations in flextegrity segmental beams inspired by Leonardo’s triangular masonry construction\",\"authors\":\"Claudio Boni, Gianni Royer-Carfagni\",\"doi\":\"10.1098/rspa.2023.0453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Tabula XCI verso of Codex Atlanticus, Leonardo da Vinci presents an ingenious masonry structure composed of segments in the shape of inverted triangles. These are assembled by contact in a chain to obtain a lintel or jack arch, where they are pressed together by the thrust of the end constraints. Drawing inspiration from Leonardo’s sketches, we show that, by connecting the segments in pair through elastic tendons, this system represents a new type of flextegrity beam. In a classical flextegrity, the contact surfaces of the segments are curved conjugate profiles, imposing a pure rolling motion along properly designed pitch lines: the consequent elongation of the tendon dictates the constitutive response as a function of the relative rotation of the segments. Here, the contact is through plane surfaces, so that the kinematics, besides the relative rotation, is characterized by segmental shearing. This system is theoretically analysed and a continuum model is derived as the length of the segments becomes small. Comparisons with experiments on three-dimensional-printed prototypes confirm the theoretical findings and highlight the possible competition between rotational and sliding types of deformation. Apart from the historical value, this type of construction can be used in innovative structures or metamaterials.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0453\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0453","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Shear and flexural deformations in flextegrity segmental beams inspired by Leonardo’s triangular masonry construction
In Tabula XCI verso of Codex Atlanticus, Leonardo da Vinci presents an ingenious masonry structure composed of segments in the shape of inverted triangles. These are assembled by contact in a chain to obtain a lintel or jack arch, where they are pressed together by the thrust of the end constraints. Drawing inspiration from Leonardo’s sketches, we show that, by connecting the segments in pair through elastic tendons, this system represents a new type of flextegrity beam. In a classical flextegrity, the contact surfaces of the segments are curved conjugate profiles, imposing a pure rolling motion along properly designed pitch lines: the consequent elongation of the tendon dictates the constitutive response as a function of the relative rotation of the segments. Here, the contact is through plane surfaces, so that the kinematics, besides the relative rotation, is characterized by segmental shearing. This system is theoretically analysed and a continuum model is derived as the length of the segments becomes small. Comparisons with experiments on three-dimensional-printed prototypes confirm the theoretical findings and highlight the possible competition between rotational and sliding types of deformation. Apart from the historical value, this type of construction can be used in innovative structures or metamaterials.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.