{"title":"粒子和重离子输运代码系统的最新改进- PHITS 3.33版","authors":"Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-Ichiro Abe, Takeshi Kai, Yusuke Matsuya, Norihiro Matsuda, Yuho Hirata, Takuya Sekikawa, Lan Yao, Pi-En Tsai, Hunter N. Ratliff, Hiroshi Iwase, Yasuhito Sakaki, Kenta Sugihara, Nobuhiro Shigyo, Lembit Sihver, Koji Niita","doi":"10.1080/00223131.2023.2275736","DOIUrl":null,"url":null,"abstract":"The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.33, was recently developed and released to the public. In the new version, the compatibility with nuclear data libraries and the algorithm of the track-structure modes have been improved, and they are recommended to be used for certain simulation conditions. Some utility functions and software have been developed and integrated into the new PHITS package, such as PHITS Interactive Geometry viewer in 3D (PHIG-3D) and RadioTherapy packaged based on PHITS (RT-PHITS). With these upgraded features, PHITS can be applied in a wide diversity of fields – beyond traditional nuclear engineering domains – including cosmic-ray, environmental, medical, life, and material sciences. In this paper, we summarize the upgraded features of PHITS3.33 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"50 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent improvements of the particle and Heavy Ion transport code system – PHITS version 3.33\",\"authors\":\"Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-Ichiro Abe, Takeshi Kai, Yusuke Matsuya, Norihiro Matsuda, Yuho Hirata, Takuya Sekikawa, Lan Yao, Pi-En Tsai, Hunter N. Ratliff, Hiroshi Iwase, Yasuhito Sakaki, Kenta Sugihara, Nobuhiro Shigyo, Lembit Sihver, Koji Niita\",\"doi\":\"10.1080/00223131.2023.2275736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.33, was recently developed and released to the public. In the new version, the compatibility with nuclear data libraries and the algorithm of the track-structure modes have been improved, and they are recommended to be used for certain simulation conditions. Some utility functions and software have been developed and integrated into the new PHITS package, such as PHITS Interactive Geometry viewer in 3D (PHIG-3D) and RadioTherapy packaged based on PHITS (RT-PHITS). With these upgraded features, PHITS can be applied in a wide diversity of fields – beyond traditional nuclear engineering domains – including cosmic-ray, environmental, medical, life, and material sciences. In this paper, we summarize the upgraded features of PHITS3.33 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.\",\"PeriodicalId\":16526,\"journal\":{\"name\":\"Journal of Nuclear Science and Technology\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2275736\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2275736","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent improvements of the particle and Heavy Ion transport code system – PHITS version 3.33
The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.33, was recently developed and released to the public. In the new version, the compatibility with nuclear data libraries and the algorithm of the track-structure modes have been improved, and they are recommended to be used for certain simulation conditions. Some utility functions and software have been developed and integrated into the new PHITS package, such as PHITS Interactive Geometry viewer in 3D (PHIG-3D) and RadioTherapy packaged based on PHITS (RT-PHITS). With these upgraded features, PHITS can be applied in a wide diversity of fields – beyond traditional nuclear engineering domains – including cosmic-ray, environmental, medical, life, and material sciences. In this paper, we summarize the upgraded features of PHITS3.33 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.
期刊介绍:
The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World.
JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to:
General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard
Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology
Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation,
Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing
Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.