基于多模态自编码器的特征集成预测药物分类码

Yi-Sue Jung, Jong-Hoon Park, Young-Rae Cho
{"title":"基于多模态自编码器的特征集成预测药物分类码","authors":"Yi-Sue Jung, Jong-Hoon Park, Young-Rae Cho","doi":"10.5626/ktcp.2023.29.10.474","DOIUrl":null,"url":null,"abstract":"COVID-19와 같이 새롭게 등장한 질병에 신속히 효과적으로 대처하기 위하여 컴퓨터 알고리즘을 사용한 약물 재배치 기법이 주목받고 있다. 본 연구에서는 약물의 다양한 특성을 멀티모달 자동 인코더를 통해 통합하여 약물의 분류 체계인 ATC 코드를 예측하는 방법을 제안한다. 약물 간의 유사도는 약물의 화학 구조, 질병 또는 단백질과의 상관관계, 약물 간 상호작용, 약물 부작용 정보를 활용하여 계산하였고, 멀티모달 자동 인코더를 통해 이를 통합하여 하나의 약물 유사도 네트워크를 구성하였다. 또한, 약물-ATC 코드 이기종 네트워크를 구성하여 ATC 코드 예측을 진행하였다. 교차검증을 통해 실험 결과를 평가했을 때, 단일 유사도를 사용하는 경우 0.847의 AUC 값에서 병합된 유사도를 사용했을 때 0.914의 AUC 값으로 예측 정확도가 8.5% 향상되었다.","PeriodicalId":479646,"journal":{"name":"Jeongbogwahakoe keompyuting-ui silje nonmunji","volume":"37 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Drug Classification Codes by Feature Integration Using Multi-modal Autoencoders\",\"authors\":\"Yi-Sue Jung, Jong-Hoon Park, Young-Rae Cho\",\"doi\":\"10.5626/ktcp.2023.29.10.474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19와 같이 새롭게 등장한 질병에 신속히 효과적으로 대처하기 위하여 컴퓨터 알고리즘을 사용한 약물 재배치 기법이 주목받고 있다. 본 연구에서는 약물의 다양한 특성을 멀티모달 자동 인코더를 통해 통합하여 약물의 분류 체계인 ATC 코드를 예측하는 방법을 제안한다. 약물 간의 유사도는 약물의 화학 구조, 질병 또는 단백질과의 상관관계, 약물 간 상호작용, 약물 부작용 정보를 활용하여 계산하였고, 멀티모달 자동 인코더를 통해 이를 통합하여 하나의 약물 유사도 네트워크를 구성하였다. 또한, 약물-ATC 코드 이기종 네트워크를 구성하여 ATC 코드 예측을 진행하였다. 교차검증을 통해 실험 결과를 평가했을 때, 단일 유사도를 사용하는 경우 0.847의 AUC 값에서 병합된 유사도를 사용했을 때 0.914의 AUC 값으로 예측 정확도가 8.5% 향상되었다.\",\"PeriodicalId\":479646,\"journal\":{\"name\":\"Jeongbogwahakoe keompyuting-ui silje nonmunji\",\"volume\":\"37 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jeongbogwahakoe keompyuting-ui silje nonmunji\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5626/ktcp.2023.29.10.474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jeongbogwahakoe keompyuting-ui silje nonmunji","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5626/ktcp.2023.29.10.474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了迅速有效应对COVID-19等新登场的疾病,使用计算机算法的药物再配置方法备受关注。本研究提出了将药物的多种特性通过多模态自动编码器进行整合,预测药物分类体系ATC代码的方法。药物之间的相似度是利用药物的化学结构、疾病或蛋白质之间的相关关系、药物之间的相互作用、药物副作用信息来计算的,通过多模态自动编码器将其整合,构成了一个药物相似度网络。此外,还构建药物-ATC代码异构网络,进行ATC代码预测。交叉验证评估实验结果时,使用单一相似度的AUC值为0.847,使用合并相似度的AUC值为0.914,预测准确度提高了8.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Drug Classification Codes by Feature Integration Using Multi-modal Autoencoders
COVID-19와 같이 새롭게 등장한 질병에 신속히 효과적으로 대처하기 위하여 컴퓨터 알고리즘을 사용한 약물 재배치 기법이 주목받고 있다. 본 연구에서는 약물의 다양한 특성을 멀티모달 자동 인코더를 통해 통합하여 약물의 분류 체계인 ATC 코드를 예측하는 방법을 제안한다. 약물 간의 유사도는 약물의 화학 구조, 질병 또는 단백질과의 상관관계, 약물 간 상호작용, 약물 부작용 정보를 활용하여 계산하였고, 멀티모달 자동 인코더를 통해 이를 통합하여 하나의 약물 유사도 네트워크를 구성하였다. 또한, 약물-ATC 코드 이기종 네트워크를 구성하여 ATC 코드 예측을 진행하였다. 교차검증을 통해 실험 결과를 평가했을 때, 단일 유사도를 사용하는 경우 0.847의 AUC 값에서 병합된 유사도를 사용했을 때 0.914의 AUC 값으로 예측 정확도가 8.5% 향상되었다.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal and Evaluation of the Automatic Classification Model for Combat Orders by Utilizing Korean-Based BERT Predicting Drug Classification Codes by Feature Integration Using Multi-modal Autoencoders NormixSR: Improving Long-tail Recommendation via Norm-based Embedding Mixup Session Representation An Effective Irregular Trend Prediction Method Using Feature Extraction on Potential Factors Based on CNN-LSTM Lifelog Management System for Self-directed Care of College Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1