利用聚类层次分析法和 K-Means 方法对 2022 年印度尼西亚青年素质进行聚类分析

Jeremia Novaldi, Arie Wahyu Wijayanto
{"title":"利用聚类层次分析法和 K-Means 方法对 2022 年印度尼西亚青年素质进行聚类分析","authors":"Jeremia Novaldi, Arie Wahyu Wijayanto","doi":"10.34010/komputika.v12i2.10348","DOIUrl":null,"url":null,"abstract":"Pemuda adalah generasi yang akan memegang masa depan Indonesia. Menurut BPS, seperempat penduduk Indonesia merupakan pemuda. Dengan demikian, pemerintah memerlukan gambaran mengenai kualitas pemuda saat ini untuk merumuskan kebijakan yang tepat untuk tiap daerah. Penelitian ini bertujuan untuk mengelompokan provinsi-provinsi di Indonesia menurut data kepemudaan dengan menggunakan metode hierarki aglomeratif dan K-Means. Berdasarkan nilai indeks validitas internal dan stabilitas, hierarki aglomeratif (Ward’s method) dengan jumlah cluster 2 dipilih sebagai metode pengelompokan terbaik. Metode ini menghasilkan 2 cluster yang masing-masing terdiri dari 11 dan 23 provinsi. Secara umum, Cluster 1 berisi provinsi-provinsi dengan kualitas pemuda yang lebih baik, di mana nilai rata-rata RLS pemuda, persentase pemuda dengan akses internet, persentase pemuda dengan jaminan kesehatan yang lebih tinggi dari Cluster 2 meskipun memiliki TPT yang lebih tinggi. Sebaliknya, Cluster 2 memiliki nilai yang lebih tinggi pada indikator Angka Kesakitan Pemuda, persentase pemuda dengan usia kawin pertama 16 – 18 tahun, dan persentase pemudi yang melahirkan bayi dengan BBLR","PeriodicalId":52813,"journal":{"name":"Komputika","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Cluster Kualitas Pemuda di Indonesia pada Tahun 2022 dengan Agglomerative Hierarchical dan K-Means\",\"authors\":\"Jeremia Novaldi, Arie Wahyu Wijayanto\",\"doi\":\"10.34010/komputika.v12i2.10348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pemuda adalah generasi yang akan memegang masa depan Indonesia. Menurut BPS, seperempat penduduk Indonesia merupakan pemuda. Dengan demikian, pemerintah memerlukan gambaran mengenai kualitas pemuda saat ini untuk merumuskan kebijakan yang tepat untuk tiap daerah. Penelitian ini bertujuan untuk mengelompokan provinsi-provinsi di Indonesia menurut data kepemudaan dengan menggunakan metode hierarki aglomeratif dan K-Means. Berdasarkan nilai indeks validitas internal dan stabilitas, hierarki aglomeratif (Ward’s method) dengan jumlah cluster 2 dipilih sebagai metode pengelompokan terbaik. Metode ini menghasilkan 2 cluster yang masing-masing terdiri dari 11 dan 23 provinsi. Secara umum, Cluster 1 berisi provinsi-provinsi dengan kualitas pemuda yang lebih baik, di mana nilai rata-rata RLS pemuda, persentase pemuda dengan akses internet, persentase pemuda dengan jaminan kesehatan yang lebih tinggi dari Cluster 2 meskipun memiliki TPT yang lebih tinggi. Sebaliknya, Cluster 2 memiliki nilai yang lebih tinggi pada indikator Angka Kesakitan Pemuda, persentase pemuda dengan usia kawin pertama 16 – 18 tahun, dan persentase pemudi yang melahirkan bayi dengan BBLR\",\"PeriodicalId\":52813,\"journal\":{\"name\":\"Komputika\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Komputika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34010/komputika.v12i2.10348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputika.v12i2.10348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

青春是印尼未来的一代。根据BPS的数据,四分之一的印尼公民是年轻人。因此,政府需要描述当前年轻人的素质,为每个地区制定适当的政策。本研究的目标是利用分层关系和k -手段将印尼的青少年数据分组为多个省份。基于内部有效性和稳定性的值值,集群2的流线型层次选择为最佳分组方法。这种方法导致了两个集群,每个集群由11个省和23个省组成。一般来说,集群1包含的省份有更好的青年质量,其中青年RLS的平均得分、上网的青年百分比、比集群2拥有更高健康保障的青年百分比,尽管有更高的TPT。相比之下,集群2的得分更高,第一个结婚年龄为16 - 18岁的青年,以及由BBLR产下婴儿的青年率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Cluster Kualitas Pemuda di Indonesia pada Tahun 2022 dengan Agglomerative Hierarchical dan K-Means
Pemuda adalah generasi yang akan memegang masa depan Indonesia. Menurut BPS, seperempat penduduk Indonesia merupakan pemuda. Dengan demikian, pemerintah memerlukan gambaran mengenai kualitas pemuda saat ini untuk merumuskan kebijakan yang tepat untuk tiap daerah. Penelitian ini bertujuan untuk mengelompokan provinsi-provinsi di Indonesia menurut data kepemudaan dengan menggunakan metode hierarki aglomeratif dan K-Means. Berdasarkan nilai indeks validitas internal dan stabilitas, hierarki aglomeratif (Ward’s method) dengan jumlah cluster 2 dipilih sebagai metode pengelompokan terbaik. Metode ini menghasilkan 2 cluster yang masing-masing terdiri dari 11 dan 23 provinsi. Secara umum, Cluster 1 berisi provinsi-provinsi dengan kualitas pemuda yang lebih baik, di mana nilai rata-rata RLS pemuda, persentase pemuda dengan akses internet, persentase pemuda dengan jaminan kesehatan yang lebih tinggi dari Cluster 2 meskipun memiliki TPT yang lebih tinggi. Sebaliknya, Cluster 2 memiliki nilai yang lebih tinggi pada indikator Angka Kesakitan Pemuda, persentase pemuda dengan usia kawin pertama 16 – 18 tahun, dan persentase pemudi yang melahirkan bayi dengan BBLR
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊最新文献
Perbandingan Kinerja Algoritma Multinomial dan Bernoulli Naïve Bayes dalam Mengklasifikasikan Komentar Cyberbullying Klasifikasi Pemenuhan Pilar Sanitasi Puskesmas Menggunakan Metode Naive Bayes Analisis Cluster Kualitas Pemuda di Indonesia pada Tahun 2022 dengan Agglomerative Hierarchical dan K-Means Klasifikasi Rentang Usia Dan Gender Dengan Deteksi Suara Menggunakan Metode Deep Learning Algoritma Cnn (Convolutional Neural Network) Implementasi Metode Weighted Moving Average (WMA) Pada Prediksi Harga Bahan Pokok
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1