Sungmin Yoon, Yasuhiro Kimura, Motoki Uchida, Yang Ju, Yuhki Toku
{"title":"纳米结构多晶AlCoCrFeNi高熵合金的高温拉伸和压缩行为:分子动力学研究","authors":"Sungmin Yoon, Yasuhiro Kimura, Motoki Uchida, Yang Ju, Yuhki Toku","doi":"10.1115/1.4063802","DOIUrl":null,"url":null,"abstract":"Abstract Molecular dynamics studies were performed to assess tensile and compressive behaviors at high temperatures up to 1200 °C for nanostructured polycrystalline AlCoCrFeNi high entropy alloy (HEA). As the temperature increased, the tensile yield stress, tensile/compressive ultimate strengths, and elastic modulus decreased, whereas the compressive yield stress remained constant. The temperature dependence of the phase structures (face-centered cubic (FCC) and hexagonal close-packed (HCP)) showed notable features between tension and compression. The HEA underwent FCC → HCP phase transformation when strained under both tension and compression. The evolution of the intrinsic stacking faults (ISFs) and extrinsic stacking faults (ESFs), which underwent FCC → HCP phase transformation, was observed. During compression, the ISFs → ESFs transition produced parallel twins. The evolution of mean dislocation length for the perfect, Shockley, and stair-rod partial dislocations was observed. Changes in the Shockley and stair-rod partial dislocations were observed after experiencing strain. The temperature dependence of the Shockley partial dislocation was high, whereas the stair-rod partial dislocation exhibited low-temperature dependence. From the simulation results, the structural usage of nanostructured polycrystalline AlCoCrFeNi HEA at elevated temperatures is recommended.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":"24 8","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study\",\"authors\":\"Sungmin Yoon, Yasuhiro Kimura, Motoki Uchida, Yang Ju, Yuhki Toku\",\"doi\":\"10.1115/1.4063802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Molecular dynamics studies were performed to assess tensile and compressive behaviors at high temperatures up to 1200 °C for nanostructured polycrystalline AlCoCrFeNi high entropy alloy (HEA). As the temperature increased, the tensile yield stress, tensile/compressive ultimate strengths, and elastic modulus decreased, whereas the compressive yield stress remained constant. The temperature dependence of the phase structures (face-centered cubic (FCC) and hexagonal close-packed (HCP)) showed notable features between tension and compression. The HEA underwent FCC → HCP phase transformation when strained under both tension and compression. The evolution of the intrinsic stacking faults (ISFs) and extrinsic stacking faults (ESFs), which underwent FCC → HCP phase transformation, was observed. During compression, the ISFs → ESFs transition produced parallel twins. The evolution of mean dislocation length for the perfect, Shockley, and stair-rod partial dislocations was observed. Changes in the Shockley and stair-rod partial dislocations were observed after experiencing strain. The temperature dependence of the Shockley partial dislocation was high, whereas the stair-rod partial dislocation exhibited low-temperature dependence. From the simulation results, the structural usage of nanostructured polycrystalline AlCoCrFeNi HEA at elevated temperatures is recommended.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\"24 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063802\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063802","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study
Abstract Molecular dynamics studies were performed to assess tensile and compressive behaviors at high temperatures up to 1200 °C for nanostructured polycrystalline AlCoCrFeNi high entropy alloy (HEA). As the temperature increased, the tensile yield stress, tensile/compressive ultimate strengths, and elastic modulus decreased, whereas the compressive yield stress remained constant. The temperature dependence of the phase structures (face-centered cubic (FCC) and hexagonal close-packed (HCP)) showed notable features between tension and compression. The HEA underwent FCC → HCP phase transformation when strained under both tension and compression. The evolution of the intrinsic stacking faults (ISFs) and extrinsic stacking faults (ESFs), which underwent FCC → HCP phase transformation, was observed. During compression, the ISFs → ESFs transition produced parallel twins. The evolution of mean dislocation length for the perfect, Shockley, and stair-rod partial dislocations was observed. Changes in the Shockley and stair-rod partial dislocations were observed after experiencing strain. The temperature dependence of the Shockley partial dislocation was high, whereas the stair-rod partial dislocation exhibited low-temperature dependence. From the simulation results, the structural usage of nanostructured polycrystalline AlCoCrFeNi HEA at elevated temperatures is recommended.