Stefan Schroeder, Maximilian Uhler, Mareike Schonhoff, Timo A. Nees, Tanja Wonerow, Jens Nuppnau, Frank Mantwill, Jan Philippe Kretzer
{"title":"膝关节植入物在不同负荷水平下的体外磨损行为:试验液的影响","authors":"Stefan Schroeder, Maximilian Uhler, Mareike Schonhoff, Timo A. Nees, Tanja Wonerow, Jens Nuppnau, Frank Mantwill, Jan Philippe Kretzer","doi":"10.3390/lubricants11110474","DOIUrl":null,"url":null,"abstract":"Calf serum is defined as a test fluid for in vitro knee wear simulation studies in the ISO standard. However, protein degradation typically occurs during in vitro wear simulation. The current study should indicate whether increased loads change the rheological properties of the test fluid and may, therefore, lead to favorable tribological behavior and reduced wear. Three different load levels were simulated in a displacement-controlled knee wear simulation study. The gravimetric wear rates were determined, pressure measurements were performed, and the dynamic viscosity of the test fluids were analyzed after the simulation of 0.5 × 106 cycles. The lowest load level led to the lowest wear rate, and the lowest contact pressure and contact area, compared to the medium and high-load level. Although, the high-load level led to the highest contact pressure and contact area, the wear rates were comparable to the medium-load level. The rheological measurements revealed the highest dynamic viscosity for the high-load level and no differences could be found between the medium and low loading condition. To perform realistic wear simulation studies, the reproduction of the in vivo interrelationships between the shear forces and wear are necessary.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"38 21","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Wear Behavior of Knee Implants at Different Load Levels: The Impact of the Test Fluid\",\"authors\":\"Stefan Schroeder, Maximilian Uhler, Mareike Schonhoff, Timo A. Nees, Tanja Wonerow, Jens Nuppnau, Frank Mantwill, Jan Philippe Kretzer\",\"doi\":\"10.3390/lubricants11110474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calf serum is defined as a test fluid for in vitro knee wear simulation studies in the ISO standard. However, protein degradation typically occurs during in vitro wear simulation. The current study should indicate whether increased loads change the rheological properties of the test fluid and may, therefore, lead to favorable tribological behavior and reduced wear. Three different load levels were simulated in a displacement-controlled knee wear simulation study. The gravimetric wear rates were determined, pressure measurements were performed, and the dynamic viscosity of the test fluids were analyzed after the simulation of 0.5 × 106 cycles. The lowest load level led to the lowest wear rate, and the lowest contact pressure and contact area, compared to the medium and high-load level. Although, the high-load level led to the highest contact pressure and contact area, the wear rates were comparable to the medium-load level. The rheological measurements revealed the highest dynamic viscosity for the high-load level and no differences could be found between the medium and low loading condition. To perform realistic wear simulation studies, the reproduction of the in vivo interrelationships between the shear forces and wear are necessary.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"38 21\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110474\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110474","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
In Vitro Wear Behavior of Knee Implants at Different Load Levels: The Impact of the Test Fluid
Calf serum is defined as a test fluid for in vitro knee wear simulation studies in the ISO standard. However, protein degradation typically occurs during in vitro wear simulation. The current study should indicate whether increased loads change the rheological properties of the test fluid and may, therefore, lead to favorable tribological behavior and reduced wear. Three different load levels were simulated in a displacement-controlled knee wear simulation study. The gravimetric wear rates were determined, pressure measurements were performed, and the dynamic viscosity of the test fluids were analyzed after the simulation of 0.5 × 106 cycles. The lowest load level led to the lowest wear rate, and the lowest contact pressure and contact area, compared to the medium and high-load level. Although, the high-load level led to the highest contact pressure and contact area, the wear rates were comparable to the medium-load level. The rheological measurements revealed the highest dynamic viscosity for the high-load level and no differences could be found between the medium and low loading condition. To perform realistic wear simulation studies, the reproduction of the in vivo interrelationships between the shear forces and wear are necessary.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding