打结机脱结机构的抗磨设计及打结试验

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-11-04 DOI:10.3390/lubricants11110475
Shiyu Lv, Yaming Chen, Jianjun Yin, Maile Zhou, Zefu Chen
{"title":"打结机脱结机构的抗磨设计及打结试验","authors":"Shiyu Lv, Yaming Chen, Jianjun Yin, Maile Zhou, Zefu Chen","doi":"10.3390/lubricants11110475","DOIUrl":null,"url":null,"abstract":"Aiming to solve the problem of knot-tripping failure caused by severe wear between the spherical roller and planar cam of the knotter, this paper first establishes a calculation model of the spatial cam contour surface. The knot-tripping mechanism in the knotter is designed as a line-contact curved-surface cam mechanism, with the cutter arm swinging in accordance with sinusoidal acceleration. The design significantly reduces the contact stress between the cam and the roller, compared to the original knot-tripping mechanism. Additionally, it eliminates the impact between the spherical roller and the planar cam. Based on the Archard model, the calculation model for cam-roller wear in the knot-tripping mechanism has been derived and utilized for wear calculation. The wear test results of the knot-tripping mechanism with an aluminum cam show that the curved cam has a wear amount that is 43%, 56%, 46%, and 37% lower than that of the planar cam after tying the knot 200 times, 600 times, 1300 times, and 2000 times, respectively. Under the condition that the twine tension is set to 120 N, and the rotation speed of the fluted disc is 60 rpm, the deviations between the calculated value and the measured value of the wear amount of the curved cam are 9.48%, 6.01%, 7.27%, and 9.95%, respectively. This validates the accuracy of the spatial cam wear model and the correctness of the curved cam design.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"38 5","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Wear Design of the Knot-Tripping Mechanism and Knot-Tying Test for the Knotter\",\"authors\":\"Shiyu Lv, Yaming Chen, Jianjun Yin, Maile Zhou, Zefu Chen\",\"doi\":\"10.3390/lubricants11110475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to solve the problem of knot-tripping failure caused by severe wear between the spherical roller and planar cam of the knotter, this paper first establishes a calculation model of the spatial cam contour surface. The knot-tripping mechanism in the knotter is designed as a line-contact curved-surface cam mechanism, with the cutter arm swinging in accordance with sinusoidal acceleration. The design significantly reduces the contact stress between the cam and the roller, compared to the original knot-tripping mechanism. Additionally, it eliminates the impact between the spherical roller and the planar cam. Based on the Archard model, the calculation model for cam-roller wear in the knot-tripping mechanism has been derived and utilized for wear calculation. The wear test results of the knot-tripping mechanism with an aluminum cam show that the curved cam has a wear amount that is 43%, 56%, 46%, and 37% lower than that of the planar cam after tying the knot 200 times, 600 times, 1300 times, and 2000 times, respectively. Under the condition that the twine tension is set to 120 N, and the rotation speed of the fluted disc is 60 rpm, the deviations between the calculated value and the measured value of the wear amount of the curved cam are 9.48%, 6.01%, 7.27%, and 9.95%, respectively. This validates the accuracy of the spatial cam wear model and the correctness of the curved cam design.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"38 5\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110475\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110475","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对打结机球面滚子与平面凸轮严重磨损导致打结失效的问题,首先建立了空间凸轮轮廓面的计算模型。打结机的脱结机构设计为线接触曲面凸轮机构,刀臂按正弦加速度摆动。与原来的打结脱扣机构相比,该设计显著降低了凸轮和滚子之间的接触应力。此外,它消除了球面滚子与平面凸轮之间的冲击。在Archard模型的基础上,推导了脱扣机构凸轮滚子磨损的计算模型,并将其用于磨损计算。对带铝凸轮脱结机构的磨损试验结果表明,在结200次、600次、1300次和2000次后,曲线凸轮的磨损量分别比平面凸轮低43%、56%、46%和37%。在线张力设为120 N,齿盘转速为60 rpm的情况下,曲线凸轮磨损量的计算值与实测值的偏差分别为9.48%、6.01%、7.27%和9.95%。验证了空间凸轮磨损模型的准确性和曲线凸轮设计的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-Wear Design of the Knot-Tripping Mechanism and Knot-Tying Test for the Knotter
Aiming to solve the problem of knot-tripping failure caused by severe wear between the spherical roller and planar cam of the knotter, this paper first establishes a calculation model of the spatial cam contour surface. The knot-tripping mechanism in the knotter is designed as a line-contact curved-surface cam mechanism, with the cutter arm swinging in accordance with sinusoidal acceleration. The design significantly reduces the contact stress between the cam and the roller, compared to the original knot-tripping mechanism. Additionally, it eliminates the impact between the spherical roller and the planar cam. Based on the Archard model, the calculation model for cam-roller wear in the knot-tripping mechanism has been derived and utilized for wear calculation. The wear test results of the knot-tripping mechanism with an aluminum cam show that the curved cam has a wear amount that is 43%, 56%, 46%, and 37% lower than that of the planar cam after tying the knot 200 times, 600 times, 1300 times, and 2000 times, respectively. Under the condition that the twine tension is set to 120 N, and the rotation speed of the fluted disc is 60 rpm, the deviations between the calculated value and the measured value of the wear amount of the curved cam are 9.48%, 6.01%, 7.27%, and 9.95%, respectively. This validates the accuracy of the spatial cam wear model and the correctness of the curved cam design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1