{"title":"露天矿结构控制失效的机器学习反分析","authors":"Alison McQuillan, Amichai Mitelman, Davide Elmo","doi":"10.3390/geotechnics3040066","DOIUrl":null,"url":null,"abstract":"Over the past decades, numerical modelling has become a powerful tool for rock mechanics applications. However, the accurate estimation of rock mass input parameters remains a significant challenge. Machine learning (ML) tools have recently been integrated to enhance and accelerate numerical modelling processes. In this paper, we demonstrate the novel use of ML tools for calibrating a state-of-the-art three-dimensional (3D) finite-element (FE) model of a kinematic structurally controlled failure event in an open-pit mine. The failure event involves the detachment of a large wedge, thus allowing for the accurate identification of the geometry of the rock joints. FE models are automatically generated according to estimated ranges of joint input parameters. Subsequently, ML tools are used to analyze the synthetic data and calibrate the strength parameters of the rock joints. Our findings reveal that a relatively small number of models are needed for this purpose, rendering ML a highly useful tool even for computationally demanding FE models.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"38 20","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back-Analysis of Structurally Controlled Failure in an Open-Pit Mine with Machine Learning Tools\",\"authors\":\"Alison McQuillan, Amichai Mitelman, Davide Elmo\",\"doi\":\"10.3390/geotechnics3040066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decades, numerical modelling has become a powerful tool for rock mechanics applications. However, the accurate estimation of rock mass input parameters remains a significant challenge. Machine learning (ML) tools have recently been integrated to enhance and accelerate numerical modelling processes. In this paper, we demonstrate the novel use of ML tools for calibrating a state-of-the-art three-dimensional (3D) finite-element (FE) model of a kinematic structurally controlled failure event in an open-pit mine. The failure event involves the detachment of a large wedge, thus allowing for the accurate identification of the geometry of the rock joints. FE models are automatically generated according to estimated ranges of joint input parameters. Subsequently, ML tools are used to analyze the synthetic data and calibrate the strength parameters of the rock joints. Our findings reveal that a relatively small number of models are needed for this purpose, rendering ML a highly useful tool even for computationally demanding FE models.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"38 20\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3040066\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geotechnics3040066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Back-Analysis of Structurally Controlled Failure in an Open-Pit Mine with Machine Learning Tools
Over the past decades, numerical modelling has become a powerful tool for rock mechanics applications. However, the accurate estimation of rock mass input parameters remains a significant challenge. Machine learning (ML) tools have recently been integrated to enhance and accelerate numerical modelling processes. In this paper, we demonstrate the novel use of ML tools for calibrating a state-of-the-art three-dimensional (3D) finite-element (FE) model of a kinematic structurally controlled failure event in an open-pit mine. The failure event involves the detachment of a large wedge, thus allowing for the accurate identification of the geometry of the rock joints. FE models are automatically generated according to estimated ranges of joint input parameters. Subsequently, ML tools are used to analyze the synthetic data and calibrate the strength parameters of the rock joints. Our findings reveal that a relatively small number of models are needed for this purpose, rendering ML a highly useful tool even for computationally demanding FE models.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.