{"title":"结合软件无线电学习模块和神经网络进行通信系统课程教学","authors":"Luis A. Camuñas-Mesa, José M. de la Rosa","doi":"10.3390/info14110599","DOIUrl":null,"url":null,"abstract":"The paradigm known as Cognitive Radio (CR) proposes a continuous sensing of the electromagnetic spectrum in order to dynamically modify transmission parameters, making intelligent use of the environment by taking advantage of different techniques such as Neural Networks. This paradigm is becoming especially relevant due to the congestion in the spectrum produced by increasing numbers of IoT (Internet of Things) devices. Nowadays, many different Software-Defined Radio (SDR) platforms provide tools to implement CR systems in a teaching laboratory environment. Within the framework of a ‘Communication Systems’ course, this paper presents a methodology for learning the fundamentals of radio transmitters and receivers in combination with Convolutional Neural Networks (CNNs).","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Software-Defined Radio Learning Modules and Neural Networks for Teaching Communication Systems Courses\",\"authors\":\"Luis A. Camuñas-Mesa, José M. de la Rosa\",\"doi\":\"10.3390/info14110599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paradigm known as Cognitive Radio (CR) proposes a continuous sensing of the electromagnetic spectrum in order to dynamically modify transmission parameters, making intelligent use of the environment by taking advantage of different techniques such as Neural Networks. This paradigm is becoming especially relevant due to the congestion in the spectrum produced by increasing numbers of IoT (Internet of Things) devices. Nowadays, many different Software-Defined Radio (SDR) platforms provide tools to implement CR systems in a teaching laboratory environment. Within the framework of a ‘Communication Systems’ course, this paper presents a methodology for learning the fundamentals of radio transmitters and receivers in combination with Convolutional Neural Networks (CNNs).\",\"PeriodicalId\":38479,\"journal\":{\"name\":\"Information (Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14110599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14110599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Combining Software-Defined Radio Learning Modules and Neural Networks for Teaching Communication Systems Courses
The paradigm known as Cognitive Radio (CR) proposes a continuous sensing of the electromagnetic spectrum in order to dynamically modify transmission parameters, making intelligent use of the environment by taking advantage of different techniques such as Neural Networks. This paradigm is becoming especially relevant due to the congestion in the spectrum produced by increasing numbers of IoT (Internet of Things) devices. Nowadays, many different Software-Defined Radio (SDR) platforms provide tools to implement CR systems in a teaching laboratory environment. Within the framework of a ‘Communication Systems’ course, this paper presents a methodology for learning the fundamentals of radio transmitters and receivers in combination with Convolutional Neural Networks (CNNs).