Guangliang Gao, Weichao Liang, Ming Yuan, Hanwei Qian, Qun Wang, Jie Cao
{"title":"考虑节点特征和网络拓扑的面向三角形的社区检测","authors":"Guangliang Gao, Weichao Liang, Ming Yuan, Hanwei Qian, Qun Wang, Jie Cao","doi":"10.1145/3626190","DOIUrl":null,"url":null,"abstract":"The joint use of node features and network topology to detect communities is called community detection in attributed networks. Most of the existing work along this line has been carried out through objective function optimization and has proposed numerous approaches. However, they tend to focus only on lower-order details, i.e., capture node features and network topology from node and edge views, and purely seek a higher degree of optimization to guarantee the quality of the found communities, which exacerbates unbalanced communities and free-rider effect. To further clarify and reveal the intrinsic nature of networks, we conduct triangle-oriented community detection considering node features and network topology. Specifically, we first introduce a triangle-based quality metric to preserve higher-order details of node features and network topology, and then formulate so-called two-level constraints to encode lower-order details of node features and network topology. Finally, we develop a local search framework based on optimizing our objective function consisting of the proposed quality metric and two-level constraints to achieve both non-overlapping and overlapping community detection in attributed networks. Extensive experiments demonstrate the effectiveness and efficiency of our framework and its potential in alleviating unbalanced communities and free-rider effect.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"180 S451","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangle-oriented Community Detection considering Node Features and Network Topology\",\"authors\":\"Guangliang Gao, Weichao Liang, Ming Yuan, Hanwei Qian, Qun Wang, Jie Cao\",\"doi\":\"10.1145/3626190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The joint use of node features and network topology to detect communities is called community detection in attributed networks. Most of the existing work along this line has been carried out through objective function optimization and has proposed numerous approaches. However, they tend to focus only on lower-order details, i.e., capture node features and network topology from node and edge views, and purely seek a higher degree of optimization to guarantee the quality of the found communities, which exacerbates unbalanced communities and free-rider effect. To further clarify and reveal the intrinsic nature of networks, we conduct triangle-oriented community detection considering node features and network topology. Specifically, we first introduce a triangle-based quality metric to preserve higher-order details of node features and network topology, and then formulate so-called two-level constraints to encode lower-order details of node features and network topology. Finally, we develop a local search framework based on optimizing our objective function consisting of the proposed quality metric and two-level constraints to achieve both non-overlapping and overlapping community detection in attributed networks. Extensive experiments demonstrate the effectiveness and efficiency of our framework and its potential in alleviating unbalanced communities and free-rider effect.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"180 S451\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626190\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626190","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Triangle-oriented Community Detection considering Node Features and Network Topology
The joint use of node features and network topology to detect communities is called community detection in attributed networks. Most of the existing work along this line has been carried out through objective function optimization and has proposed numerous approaches. However, they tend to focus only on lower-order details, i.e., capture node features and network topology from node and edge views, and purely seek a higher degree of optimization to guarantee the quality of the found communities, which exacerbates unbalanced communities and free-rider effect. To further clarify and reveal the intrinsic nature of networks, we conduct triangle-oriented community detection considering node features and network topology. Specifically, we first introduce a triangle-based quality metric to preserve higher-order details of node features and network topology, and then formulate so-called two-level constraints to encode lower-order details of node features and network topology. Finally, we develop a local search framework based on optimizing our objective function consisting of the proposed quality metric and two-level constraints to achieve both non-overlapping and overlapping community detection in attributed networks. Extensive experiments demonstrate the effectiveness and efficiency of our framework and its potential in alleviating unbalanced communities and free-rider effect.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.