{"title":"海底活动断层与地面振动耦合作用下隧道力学特性分析","authors":"Sun Zhuoyu, Ma Zhifang, Hou Yaolong","doi":"10.13052/ejcm2642-2085.3242","DOIUrl":null,"url":null,"abstract":"With the rapid development of modern transportation construction, the construction of cross-harbor tunnels has solved the problem of traffic connection between cross-straits, bays and islands. The construction of sub-sea tunnels has technical difficulties such as high difficulty of marine geological survey, close hydraulic connection between strata and seawater, and more developed adverse geology. Based on this, this paper studies the mechanical characteristics of the submarine tunnel under seismic action at the active fault. Firstly, the mechanical model of the universal fault interface is established, and the calculation model of the fault interface is theoretically derived by the method of vibration mechanics, and the influence of the change of the strength of the contact surface and the stiffness of the surrounding rock on both sides of the fault on the transfer coefficient is obtained. Secondly, based on the ground motion input method of two-dimensional homogeneous half-space field, the relevant program of viscoelastic artificial boundary ground motion input is written by MATLAB program, which lays the foundation and premise of load input for mechanical response calculation. Finally, the outcomes of the tunnel parameters and the interplay between the tunnel and the surrounding rock on the cracking of the tunnel lining shape and the mechanical response of the cross-fault sub-sea tunnel underneath seismic motion are mentioned, and it is concluded that the increase in seismic intensity for different seismic intensities under the sea floor has an essentially constant proportion to the increase in acceleration of the seismic response; the seepage effect under the sea floor for the tunnel lining structure reduces the seismic response displacement, velocity and The seabed seepage for the tunnel lining structure reduces the peak seismic response displacement, velocity and acceleration by about 20–35%.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"39 4","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations\",\"authors\":\"Sun Zhuoyu, Ma Zhifang, Hou Yaolong\",\"doi\":\"10.13052/ejcm2642-2085.3242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of modern transportation construction, the construction of cross-harbor tunnels has solved the problem of traffic connection between cross-straits, bays and islands. The construction of sub-sea tunnels has technical difficulties such as high difficulty of marine geological survey, close hydraulic connection between strata and seawater, and more developed adverse geology. Based on this, this paper studies the mechanical characteristics of the submarine tunnel under seismic action at the active fault. Firstly, the mechanical model of the universal fault interface is established, and the calculation model of the fault interface is theoretically derived by the method of vibration mechanics, and the influence of the change of the strength of the contact surface and the stiffness of the surrounding rock on both sides of the fault on the transfer coefficient is obtained. Secondly, based on the ground motion input method of two-dimensional homogeneous half-space field, the relevant program of viscoelastic artificial boundary ground motion input is written by MATLAB program, which lays the foundation and premise of load input for mechanical response calculation. Finally, the outcomes of the tunnel parameters and the interplay between the tunnel and the surrounding rock on the cracking of the tunnel lining shape and the mechanical response of the cross-fault sub-sea tunnel underneath seismic motion are mentioned, and it is concluded that the increase in seismic intensity for different seismic intensities under the sea floor has an essentially constant proportion to the increase in acceleration of the seismic response; the seepage effect under the sea floor for the tunnel lining structure reduces the seismic response displacement, velocity and The seabed seepage for the tunnel lining structure reduces the peak seismic response displacement, velocity and acceleration by about 20–35%.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":\"39 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.3242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations
With the rapid development of modern transportation construction, the construction of cross-harbor tunnels has solved the problem of traffic connection between cross-straits, bays and islands. The construction of sub-sea tunnels has technical difficulties such as high difficulty of marine geological survey, close hydraulic connection between strata and seawater, and more developed adverse geology. Based on this, this paper studies the mechanical characteristics of the submarine tunnel under seismic action at the active fault. Firstly, the mechanical model of the universal fault interface is established, and the calculation model of the fault interface is theoretically derived by the method of vibration mechanics, and the influence of the change of the strength of the contact surface and the stiffness of the surrounding rock on both sides of the fault on the transfer coefficient is obtained. Secondly, based on the ground motion input method of two-dimensional homogeneous half-space field, the relevant program of viscoelastic artificial boundary ground motion input is written by MATLAB program, which lays the foundation and premise of load input for mechanical response calculation. Finally, the outcomes of the tunnel parameters and the interplay between the tunnel and the surrounding rock on the cracking of the tunnel lining shape and the mechanical response of the cross-fault sub-sea tunnel underneath seismic motion are mentioned, and it is concluded that the increase in seismic intensity for different seismic intensities under the sea floor has an essentially constant proportion to the increase in acceleration of the seismic response; the seepage effect under the sea floor for the tunnel lining structure reduces the seismic response displacement, velocity and The seabed seepage for the tunnel lining structure reduces the peak seismic response displacement, velocity and acceleration by about 20–35%.