多分辨率局部光谱属性社区搜索

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on the Web Pub Date : 2023-11-03 DOI:10.1145/3624580
Qingqing Li, Huifang Ma, Zhixin Li, Liang Chang
{"title":"多分辨率局部光谱属性社区搜索","authors":"Qingqing Li, Huifang Ma, Zhixin Li, Liang Chang","doi":"10.1145/3624580","DOIUrl":null,"url":null,"abstract":"Community search has become especially important in graph analysis task, which aims to identify latent members of a particular community from a few given nodes. Most of the existing efforts in community search focus on exploring the community structure with a single scale in which the given nodes are located. Despite promising results, the following two insights are often neglected. First, node attributes provide rich and highly related auxiliary information apart from network interactions for characterizing the node properties. Attributes may indicate the community assignment of a node with very few links, which would be difficult to determine from the network structure alone. Second, the multiresolution community affords latent information to depict the hierarchical relation of the network and ensure that one of them is closest to the real one. It is essential for users to understand the underlying structure of the network and explore the community with strong structure and attribute cohesiveness at disparate scales. These aspects motivate us to develop a new community search framework called Multiresolution Local Spectral Attributed Community Search (MLSACS). Specifically, inspired by the local modularity, graph wavelets, and scaling functions, we propose a new Multiresolution Local modularity (MLQ) based on a reconstructed node attribute graph. Furthermore, to detect local communities with cohesive structures and attributes at different scales, a sparse indicator vector is developed based on MLQ by solving a linear programming problem. Extensive experimental results on both synthetic and real-world attributed graphs have demonstrated the detected communities are meaningful and the scale can be changed reasonably.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"185 1‐6","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiresolution Local Spectral Attributed Community Search\",\"authors\":\"Qingqing Li, Huifang Ma, Zhixin Li, Liang Chang\",\"doi\":\"10.1145/3624580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community search has become especially important in graph analysis task, which aims to identify latent members of a particular community from a few given nodes. Most of the existing efforts in community search focus on exploring the community structure with a single scale in which the given nodes are located. Despite promising results, the following two insights are often neglected. First, node attributes provide rich and highly related auxiliary information apart from network interactions for characterizing the node properties. Attributes may indicate the community assignment of a node with very few links, which would be difficult to determine from the network structure alone. Second, the multiresolution community affords latent information to depict the hierarchical relation of the network and ensure that one of them is closest to the real one. It is essential for users to understand the underlying structure of the network and explore the community with strong structure and attribute cohesiveness at disparate scales. These aspects motivate us to develop a new community search framework called Multiresolution Local Spectral Attributed Community Search (MLSACS). Specifically, inspired by the local modularity, graph wavelets, and scaling functions, we propose a new Multiresolution Local modularity (MLQ) based on a reconstructed node attribute graph. Furthermore, to detect local communities with cohesive structures and attributes at different scales, a sparse indicator vector is developed based on MLQ by solving a linear programming problem. Extensive experimental results on both synthetic and real-world attributed graphs have demonstrated the detected communities are meaningful and the scale can be changed reasonably.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"185 1‐6\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3624580\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3624580","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

社区搜索在图分析任务中变得尤为重要,它旨在从几个给定的节点中识别特定社区的潜在成员。现有的社区搜索大多集中在探索给定节点所在的单一尺度的社区结构。尽管结果很有希望,但以下两个见解经常被忽视。首先,除了网络交互之外,节点属性还提供了丰富且高度相关的辅助信息来描述节点属性。属性可能表示链路很少的节点的团体分配,这很难单独从网络结构中确定。其次,多分辨率社区提供了潜在的信息来描述网络的层次关系,并确保其中一个最接近真实的网络。用户必须了解网络的底层结构,并在不同尺度上探索具有强结构和属性内聚性的社区。这些方面促使我们开发了一个新的社区搜索框架,称为多分辨率局部光谱属性社区搜索(MLSACS)。具体来说,在局部模块化、图小波和尺度函数的启发下,我们提出了一种基于重构节点属性图的多分辨率局部模块化(MLQ)方法。在此基础上,通过求解线性规划问题,建立了基于MLQ的稀疏指示向量,用于在不同尺度下检测具有内聚结构和属性的局部群落。在合成属性图和真实属性图上的大量实验结果表明,检测到的群落是有意义的,尺度可以合理地改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiresolution Local Spectral Attributed Community Search
Community search has become especially important in graph analysis task, which aims to identify latent members of a particular community from a few given nodes. Most of the existing efforts in community search focus on exploring the community structure with a single scale in which the given nodes are located. Despite promising results, the following two insights are often neglected. First, node attributes provide rich and highly related auxiliary information apart from network interactions for characterizing the node properties. Attributes may indicate the community assignment of a node with very few links, which would be difficult to determine from the network structure alone. Second, the multiresolution community affords latent information to depict the hierarchical relation of the network and ensure that one of them is closest to the real one. It is essential for users to understand the underlying structure of the network and explore the community with strong structure and attribute cohesiveness at disparate scales. These aspects motivate us to develop a new community search framework called Multiresolution Local Spectral Attributed Community Search (MLSACS). Specifically, inspired by the local modularity, graph wavelets, and scaling functions, we propose a new Multiresolution Local modularity (MLQ) based on a reconstructed node attribute graph. Furthermore, to detect local communities with cohesive structures and attributes at different scales, a sparse indicator vector is developed based on MLQ by solving a linear programming problem. Extensive experimental results on both synthetic and real-world attributed graphs have demonstrated the detected communities are meaningful and the scale can be changed reasonably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on the Web
ACM Transactions on the Web 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
26
审稿时长
7.5 months
期刊介绍: Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML. In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces. Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.
期刊最新文献
DCDIMB: Dynamic Community-based Diversified Influence Maximization using Bridge Nodes Know their Customers: An Empirical Study of Online Account Enumeration Attacks Learning Dynamic Multimodal Network Slot Concepts from the Web for Forecasting Environmental, Social and Governance Ratings MuLX-QA: Classifying Multi-Labels and Extracting Rationale Spans in Social Media Posts Heterogeneous Graph Neural Network with Personalized and Adaptive Diversity for News Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1