Zhibin Yan, Guangyu Zhao, Qihao Lin, Guiping Zhuang, Jiayi Zhu, Juan Jin
{"title":"采用网络药理学方法探讨龙爪草活性肽成分抗肝纤维化的分子机制","authors":"Zhibin Yan, Guangyu Zhao, Qihao Lin, Guiping Zhuang, Jiayi Zhu, Juan Jin","doi":"10.1002/pep2.24335","DOIUrl":null,"url":null,"abstract":"Abstract Carapax Trionycis is a traditional Chinese medicine and it has been clear that oligo‐peptides from Carapax Trionycis extract (CTP) are the main active substances for the treatment of liver diseases. However, little is known about the mechanism of CTP against liver fibrosis. Here, network pharmacology combined with molecular docking were performed to identify the in‐silico molecular mechanism and the potential targets for CTP to ameliorate liver fibrosis. We collected eight active peptides ingredients that published in public databases and predicted the targets. Liver fibrosis related genes were acquired from the GeneCards and DisGeNET platform. Then, we identified a total of 52 peptides‐liver fibrosis‐related genes. KEGG and GO enrichment analyses indicated that these targets are significantly enriched in relaxin signaling pathway, IL‐17 signaling pathway, TNF signaling pathway. We identified the top 10 genes with high centrality measures from the network by CytoHubba, including CASP3, AKT1, IL1B, MMP9, and PTGS2. The molecular docking between these hub genes and the corresponding CTP was performed in GRAMM and visualized by PyMOL. Our results provide an important reference and scientific basis for treating liver fibrosis with CTP.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"64 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A network pharmacology approach to explore the molecular mechanism of active peptide ingredients of <i>Carapax Trionycis</i> on liver fibrosis\",\"authors\":\"Zhibin Yan, Guangyu Zhao, Qihao Lin, Guiping Zhuang, Jiayi Zhu, Juan Jin\",\"doi\":\"10.1002/pep2.24335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Carapax Trionycis is a traditional Chinese medicine and it has been clear that oligo‐peptides from Carapax Trionycis extract (CTP) are the main active substances for the treatment of liver diseases. However, little is known about the mechanism of CTP against liver fibrosis. Here, network pharmacology combined with molecular docking were performed to identify the in‐silico molecular mechanism and the potential targets for CTP to ameliorate liver fibrosis. We collected eight active peptides ingredients that published in public databases and predicted the targets. Liver fibrosis related genes were acquired from the GeneCards and DisGeNET platform. Then, we identified a total of 52 peptides‐liver fibrosis‐related genes. KEGG and GO enrichment analyses indicated that these targets are significantly enriched in relaxin signaling pathway, IL‐17 signaling pathway, TNF signaling pathway. We identified the top 10 genes with high centrality measures from the network by CytoHubba, including CASP3, AKT1, IL1B, MMP9, and PTGS2. The molecular docking between these hub genes and the corresponding CTP was performed in GRAMM and visualized by PyMOL. Our results provide an important reference and scientific basis for treating liver fibrosis with CTP.\",\"PeriodicalId\":19825,\"journal\":{\"name\":\"Peptide Science\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptide Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pep2.24335\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pep2.24335","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A network pharmacology approach to explore the molecular mechanism of active peptide ingredients of Carapax Trionycis on liver fibrosis
Abstract Carapax Trionycis is a traditional Chinese medicine and it has been clear that oligo‐peptides from Carapax Trionycis extract (CTP) are the main active substances for the treatment of liver diseases. However, little is known about the mechanism of CTP against liver fibrosis. Here, network pharmacology combined with molecular docking were performed to identify the in‐silico molecular mechanism and the potential targets for CTP to ameliorate liver fibrosis. We collected eight active peptides ingredients that published in public databases and predicted the targets. Liver fibrosis related genes were acquired from the GeneCards and DisGeNET platform. Then, we identified a total of 52 peptides‐liver fibrosis‐related genes. KEGG and GO enrichment analyses indicated that these targets are significantly enriched in relaxin signaling pathway, IL‐17 signaling pathway, TNF signaling pathway. We identified the top 10 genes with high centrality measures from the network by CytoHubba, including CASP3, AKT1, IL1B, MMP9, and PTGS2. The molecular docking between these hub genes and the corresponding CTP was performed in GRAMM and visualized by PyMOL. Our results provide an important reference and scientific basis for treating liver fibrosis with CTP.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.