多酚介导的高稳定性和生物活性硒纳米颗粒的构建

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2023-10-19 DOI:10.1049/bsb2.12067
Rong Hu, Xiao Wang, Lu Han, Xiong Lu
{"title":"多酚介导的高稳定性和生物活性硒纳米颗粒的构建","authors":"Rong Hu, Xiao Wang, Lu Han, Xiong Lu","doi":"10.1049/bsb2.12067","DOIUrl":null,"url":null,"abstract":"Abstract Selenium (Se), a well‐known essential element in human health, plays a vital role in regulating metabolism owing to its antioxidative nature. However, organic Se compounds are toxic and cannot be used for biomedical applications. Selenium nanoparticles (SeNPs) exhibit low biological toxicity and high bioavailability; however, they are prone to aggregation and are extremely unstable, thereby diminishing their bioactivity and bioavailability. To overcome these limitations, ultra‐small, highly stable, and bioactive SeNPs were synthesised based on an in‐situ hybridisation strategy by using polyphenol‐grafted‐chitosan (GA‐CS) to control and restrict crystal growth of Se nanoparticles. The resultant GA‐CS@nSe exhibited an average particle size of ∼30 nm and was highly stable in aqueous solutions. In addition, GA‐CS@nSe displayed improved biocompatibility and enhanced antioxidative activity. Taken together, the authors provide a basis for polyphenol‐mediated construction of Se‐based particles with increased bioactivity.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"69 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyphenol‐mediated construction of highly stable and bioactive selenium nanoparticles\",\"authors\":\"Rong Hu, Xiao Wang, Lu Han, Xiong Lu\",\"doi\":\"10.1049/bsb2.12067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Selenium (Se), a well‐known essential element in human health, plays a vital role in regulating metabolism owing to its antioxidative nature. However, organic Se compounds are toxic and cannot be used for biomedical applications. Selenium nanoparticles (SeNPs) exhibit low biological toxicity and high bioavailability; however, they are prone to aggregation and are extremely unstable, thereby diminishing their bioactivity and bioavailability. To overcome these limitations, ultra‐small, highly stable, and bioactive SeNPs were synthesised based on an in‐situ hybridisation strategy by using polyphenol‐grafted‐chitosan (GA‐CS) to control and restrict crystal growth of Se nanoparticles. The resultant GA‐CS@nSe exhibited an average particle size of ∼30 nm and was highly stable in aqueous solutions. In addition, GA‐CS@nSe displayed improved biocompatibility and enhanced antioxidative activity. Taken together, the authors provide a basis for polyphenol‐mediated construction of Se‐based particles with increased bioactivity.\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/bsb2.12067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/bsb2.12067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

硒(Se)是一种众所周知的人体健康必需元素,由于其抗氧化性质,在调节代谢中起着至关重要的作用。然而,有机硒化合物是有毒的,不能用于生物医学应用。硒纳米颗粒具有低生物毒性和高生物利用度的特点;然而,它们容易聚集,极不稳定,从而降低了它们的生物活性和生物利用度。为了克服这些限制,基于原位杂交策略,利用多酚接枝壳聚糖(GA - CS)来控制和限制硒纳米粒子的晶体生长,合成了超小、高度稳定和具有生物活性的SeNPs。合成的GA‐CS@nSe平均粒径为~ 30 nm,在水溶液中高度稳定。此外,GA‐CS@nSe显示出更好的生物相容性和增强的抗氧化活性。综上所述,作者为多酚介导构建具有更高生物活性的硒基颗粒提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyphenol‐mediated construction of highly stable and bioactive selenium nanoparticles
Abstract Selenium (Se), a well‐known essential element in human health, plays a vital role in regulating metabolism owing to its antioxidative nature. However, organic Se compounds are toxic and cannot be used for biomedical applications. Selenium nanoparticles (SeNPs) exhibit low biological toxicity and high bioavailability; however, they are prone to aggregation and are extremely unstable, thereby diminishing their bioactivity and bioavailability. To overcome these limitations, ultra‐small, highly stable, and bioactive SeNPs were synthesised based on an in‐situ hybridisation strategy by using polyphenol‐grafted‐chitosan (GA‐CS) to control and restrict crystal growth of Se nanoparticles. The resultant GA‐CS@nSe exhibited an average particle size of ∼30 nm and was highly stable in aqueous solutions. In addition, GA‐CS@nSe displayed improved biocompatibility and enhanced antioxidative activity. Taken together, the authors provide a basis for polyphenol‐mediated construction of Se‐based particles with increased bioactivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1