{"title":"建立了计算港区海浪衍射的抛物方程","authors":"A. G. Gogin, I. G. Kantarzhi","doi":"10.59887/2073-6673.2023.16(3)-8","DOIUrl":null,"url":null,"abstract":"Application method of parabolic equations is presented in this paper for calculating diffraction of sea waves behind converging breakwaters, which entrance is not parallel to front of approaching waves. For this, the method of linear superposition of results obtained separately for each breakwater was used. Based on a comparison of results obtained by this method with results of physical (obtained in a wave basin) and numerical (obtained using DHI MIKE 21 BW) model experiments with different settings (40 models in total), a conclusion about using allowability of the obtained equations was made. Results of the study make it possible to recommend the obtained equations for practical use in studies of seaports wave regimes, where diffraction phenomena are strong. Complexity of a function used in the parabolic method causes appearance of “petals” of diffraction coefficient isolines in protected water area. Approximate equations are presented for smoothing the oscillations of the complex amplitude function along lines parallel and perpendicular to axis of breakwaters. It is shown that associated error in obtaining diffraction coefficient varies on average within 2–5 %, and maximum error obtained was 12.5 %.","PeriodicalId":37647,"journal":{"name":"Fundamentalnaya i Prikladnaya Gidrofizika","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the parabolic equation for calculation of sea waves diffraction in port area\",\"authors\":\"A. G. Gogin, I. G. Kantarzhi\",\"doi\":\"10.59887/2073-6673.2023.16(3)-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application method of parabolic equations is presented in this paper for calculating diffraction of sea waves behind converging breakwaters, which entrance is not parallel to front of approaching waves. For this, the method of linear superposition of results obtained separately for each breakwater was used. Based on a comparison of results obtained by this method with results of physical (obtained in a wave basin) and numerical (obtained using DHI MIKE 21 BW) model experiments with different settings (40 models in total), a conclusion about using allowability of the obtained equations was made. Results of the study make it possible to recommend the obtained equations for practical use in studies of seaports wave regimes, where diffraction phenomena are strong. Complexity of a function used in the parabolic method causes appearance of “petals” of diffraction coefficient isolines in protected water area. Approximate equations are presented for smoothing the oscillations of the complex amplitude function along lines parallel and perpendicular to axis of breakwaters. It is shown that associated error in obtaining diffraction coefficient varies on average within 2–5 %, and maximum error obtained was 12.5 %.\",\"PeriodicalId\":37647,\"journal\":{\"name\":\"Fundamentalnaya i Prikladnaya Gidrofizika\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentalnaya i Prikladnaya Gidrofizika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59887/2073-6673.2023.16(3)-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentalnaya i Prikladnaya Gidrofizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59887/2073-6673.2023.16(3)-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了用抛物方程计算入口不平行于前方的会聚防波堤后波浪衍射的方法。为此,采用了对每个防波堤分别获得的结果进行线性叠加的方法。通过与不同设置(共40个模型)的物理(波盆)和数值(DHI MIKE 21 BW)模型实验结果的比较,得出了所得方程使用容许度的结论。这项研究的结果使我们有可能推荐所得到的方程,以便在研究衍射现象较强的海港波浪状态时实际使用。抛物线法中函数的复杂性导致保护水域绕射系数等值线出现“花瓣”。给出了沿平行于防波堤轴线和垂直于防波堤轴线的复振幅函数的近似平滑方程。结果表明,所得衍射系数的相关误差平均在2 ~ 5%之间,最大误差为12.5%。
Development of the parabolic equation for calculation of sea waves diffraction in port area
Application method of parabolic equations is presented in this paper for calculating diffraction of sea waves behind converging breakwaters, which entrance is not parallel to front of approaching waves. For this, the method of linear superposition of results obtained separately for each breakwater was used. Based on a comparison of results obtained by this method with results of physical (obtained in a wave basin) and numerical (obtained using DHI MIKE 21 BW) model experiments with different settings (40 models in total), a conclusion about using allowability of the obtained equations was made. Results of the study make it possible to recommend the obtained equations for practical use in studies of seaports wave regimes, where diffraction phenomena are strong. Complexity of a function used in the parabolic method causes appearance of “petals” of diffraction coefficient isolines in protected water area. Approximate equations are presented for smoothing the oscillations of the complex amplitude function along lines parallel and perpendicular to axis of breakwaters. It is shown that associated error in obtaining diffraction coefficient varies on average within 2–5 %, and maximum error obtained was 12.5 %.
期刊介绍:
Emphasis of the journal includes the following areas: - fundamental and applied hydrophysics; - dynamics and hydrodynamics of marine objects; - physical fields of ocean, atmosphere, marine objects and their interaction; - methods and means for registration hydrophysical fields of ocean and marine objects; - application of information technology for solving problems in the field of hydrophysics, design and operation of the offshore facilities system; - hydrosphere ecology; - hydrobionics; As well as the most interesting scientific conferences’ reports, materials of science debates, book reviews. From the scientists, engineers (and designers) of marine equipment, students, graduate students and professors who specialize in the field of fundamental and applied hydrophysics.