{"title":"细胞水平的压力感受器机制。","authors":"F Sachs","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Nothing is known of transduction mechanisms of baroreceptors in vivo. Not even the site of transduction is known. However, there are mechanotransducer ion channels that provide a useful model system of transduction. In these channels, transduction is accomplished by a strain-dependent increase in the probability of being open. Membrane tension is coupled to the channel by cytoskeletal strands that concentrate the strain energy from a large (approximately equal to 4000 A diameter) area of membrane and thereby provide high sensitivity. The channel is fast and does not inactivate, but viscoelastic coupling to the channel can dramatically alter the transfer function.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 1","pages":"12-6"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baroreceptor mechanisms at the cellular level.\",\"authors\":\"F Sachs\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nothing is known of transduction mechanisms of baroreceptors in vivo. Not even the site of transduction is known. However, there are mechanotransducer ion channels that provide a useful model system of transduction. In these channels, transduction is accomplished by a strain-dependent increase in the probability of being open. Membrane tension is coupled to the channel by cytoskeletal strands that concentrate the strain energy from a large (approximately equal to 4000 A diameter) area of membrane and thereby provide high sensitivity. The channel is fast and does not inactivate, but viscoelastic coupling to the channel can dramatically alter the transfer function.</p>\",\"PeriodicalId\":12183,\"journal\":{\"name\":\"Federation proceedings\",\"volume\":\"46 1\",\"pages\":\"12-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federation proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nothing is known of transduction mechanisms of baroreceptors in vivo. Not even the site of transduction is known. However, there are mechanotransducer ion channels that provide a useful model system of transduction. In these channels, transduction is accomplished by a strain-dependent increase in the probability of being open. Membrane tension is coupled to the channel by cytoskeletal strands that concentrate the strain energy from a large (approximately equal to 4000 A diameter) area of membrane and thereby provide high sensitivity. The channel is fast and does not inactivate, but viscoelastic coupling to the channel can dramatically alter the transfer function.