{"title":"一种用于无线通信的矩形开槽双陷口超宽带天线","authors":"SUBHASH B K, Rajashekhar C. Biradar","doi":"10.1615/telecomradeng.2023049662","DOIUrl":null,"url":null,"abstract":"Data traffic is expanding in direct proportion to advancements in electronic systems and wireless communication. Increased bandwidth can alleviate data congestion. To meet the above demand a rectangular U-slotted Ultrawideband (UWB) dual notch antenna with a half cut ground structure is introduced in this work. The UWB is achieved by connecting the radiator via steps type structure having a dimension of 1mm around the radiator's edges. Furthermore, the ground plane is lowered, with horizontal slits etched on it. The radiator and ground plane modifications aid in achieving a larger impedance bandwidth. The UWB antenna has an overall geometry of 40 x 30 x 1.6 mm3. The projected UWB antenna operates in the frequency range of 2.6-3.9 GHz with greater than 3.2 dB gain across the impedance bandwidth. To achieve the notching in the design a U-shaped slot is carved in the radiator. This modification leads to dual notch frequency band ranging from 3.8-5.3 GHz and 6.2-7.3 GHz, thereby covering WiMAX and Satellite band. The time-domain features are also examined, and group delay is found to be less than 1 ns across the operational frequency except at the notch band. The simulated and measured results are in line and assure the designed antenna appropriate for UWB applications.","PeriodicalId":22345,"journal":{"name":"Telecommunications and Radio Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A RECTANGULAR SLOTTED DUAL NOTCH UWB ANTENNA FOR WIRELESS COMMUNICATION APPLICATION\",\"authors\":\"SUBHASH B K, Rajashekhar C. Biradar\",\"doi\":\"10.1615/telecomradeng.2023049662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data traffic is expanding in direct proportion to advancements in electronic systems and wireless communication. Increased bandwidth can alleviate data congestion. To meet the above demand a rectangular U-slotted Ultrawideband (UWB) dual notch antenna with a half cut ground structure is introduced in this work. The UWB is achieved by connecting the radiator via steps type structure having a dimension of 1mm around the radiator's edges. Furthermore, the ground plane is lowered, with horizontal slits etched on it. The radiator and ground plane modifications aid in achieving a larger impedance bandwidth. The UWB antenna has an overall geometry of 40 x 30 x 1.6 mm3. The projected UWB antenna operates in the frequency range of 2.6-3.9 GHz with greater than 3.2 dB gain across the impedance bandwidth. To achieve the notching in the design a U-shaped slot is carved in the radiator. This modification leads to dual notch frequency band ranging from 3.8-5.3 GHz and 6.2-7.3 GHz, thereby covering WiMAX and Satellite band. The time-domain features are also examined, and group delay is found to be less than 1 ns across the operational frequency except at the notch band. The simulated and measured results are in line and assure the designed antenna appropriate for UWB applications.\",\"PeriodicalId\":22345,\"journal\":{\"name\":\"Telecommunications and Radio Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunications and Radio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/telecomradeng.2023049662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunications and Radio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/telecomradeng.2023049662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
数据流量的增长与电子系统和无线通信的进步成正比。增加带宽可以缓解数据拥塞。为了满足上述需求,本文介绍了一种半切地结构的矩形u型槽超宽带双陷波天线。超宽带是通过在散热器边缘周围有一个尺寸为1mm的阶梯结构连接散热器来实现的。此外,降低了地平面,并在其上蚀刻了水平狭缝。散热器和地平面的修改有助于实现更大的阻抗带宽。UWB天线的整体几何尺寸为40 x 30 x 1.6 mm3。投影超宽带天线工作在2.6-3.9 GHz频率范围内,阻抗带宽增益大于3.2 dB。为了实现设计中的缺口,在散热器上雕刻了一个u形槽。这一改进导致了3.8-5.3 GHz和6.2-7.3 GHz的双陷波频段,从而覆盖了WiMAX和Satellite频段。时域特征也被检查,发现群延迟小于1ns横跨工作频率,除了在陷波带。仿真结果与实测结果一致,保证了设计的天线适合超宽带应用。
A RECTANGULAR SLOTTED DUAL NOTCH UWB ANTENNA FOR WIRELESS COMMUNICATION APPLICATION
Data traffic is expanding in direct proportion to advancements in electronic systems and wireless communication. Increased bandwidth can alleviate data congestion. To meet the above demand a rectangular U-slotted Ultrawideband (UWB) dual notch antenna with a half cut ground structure is introduced in this work. The UWB is achieved by connecting the radiator via steps type structure having a dimension of 1mm around the radiator's edges. Furthermore, the ground plane is lowered, with horizontal slits etched on it. The radiator and ground plane modifications aid in achieving a larger impedance bandwidth. The UWB antenna has an overall geometry of 40 x 30 x 1.6 mm3. The projected UWB antenna operates in the frequency range of 2.6-3.9 GHz with greater than 3.2 dB gain across the impedance bandwidth. To achieve the notching in the design a U-shaped slot is carved in the radiator. This modification leads to dual notch frequency band ranging from 3.8-5.3 GHz and 6.2-7.3 GHz, thereby covering WiMAX and Satellite band. The time-domain features are also examined, and group delay is found to be less than 1 ns across the operational frequency except at the notch band. The simulated and measured results are in line and assure the designed antenna appropriate for UWB applications.