Ondřej Bublík, Václav Heidler, Aleš Pecka, Jan Vimmr
{"title":"在参数化域使用物理信息卷积神经网络的流体流动建模","authors":"Ondřej Bublík, Václav Heidler, Aleš Pecka, Jan Vimmr","doi":"10.1080/10618562.2023.2260763","DOIUrl":null,"url":null,"abstract":"AbstractWe design and implement a physics-informed convolutional neural network (CNN) to solve fluid flow problems on a parametrised domain. The goal is to compare the effectiveness of training based solely on CFD-generated training data with purely physics-informed training and training based on a combination of both. We consider the problem of incompressible fluid flow in a convergent-divergent channel with variable wall shape. A speciality of the designed neural network is the incorporation of the boundary condition directly in the CNN. A physics-informed CNN that uses a non-Cartesian mesh poses a challenge when evaluating partial derivatives. We propose a gradient layer that approximates the first and second partial derivatives by finite differences using Lagrange interpolation. Our analysis shows that the convergence of purely physics-informed training is slow. However, using a small training dataset in combination with physics-informed training can achieve results comparable to physics-uninformed training with a considerably larger training dataset.Keywords: Physics-informed neural networkconvolutional neural networkU-Netincompressible fluid flowfluid dynamics Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is supported by project GA21-31457S ‘Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems’ of the Grant Agency of the Czech Republic.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains\",\"authors\":\"Ondřej Bublík, Václav Heidler, Aleš Pecka, Jan Vimmr\",\"doi\":\"10.1080/10618562.2023.2260763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractWe design and implement a physics-informed convolutional neural network (CNN) to solve fluid flow problems on a parametrised domain. The goal is to compare the effectiveness of training based solely on CFD-generated training data with purely physics-informed training and training based on a combination of both. We consider the problem of incompressible fluid flow in a convergent-divergent channel with variable wall shape. A speciality of the designed neural network is the incorporation of the boundary condition directly in the CNN. A physics-informed CNN that uses a non-Cartesian mesh poses a challenge when evaluating partial derivatives. We propose a gradient layer that approximates the first and second partial derivatives by finite differences using Lagrange interpolation. Our analysis shows that the convergence of purely physics-informed training is slow. However, using a small training dataset in combination with physics-informed training can achieve results comparable to physics-uninformed training with a considerably larger training dataset.Keywords: Physics-informed neural networkconvolutional neural networkU-Netincompressible fluid flowfluid dynamics Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is supported by project GA21-31457S ‘Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems’ of the Grant Agency of the Czech Republic.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2023.2260763\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10618562.2023.2260763","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains
AbstractWe design and implement a physics-informed convolutional neural network (CNN) to solve fluid flow problems on a parametrised domain. The goal is to compare the effectiveness of training based solely on CFD-generated training data with purely physics-informed training and training based on a combination of both. We consider the problem of incompressible fluid flow in a convergent-divergent channel with variable wall shape. A speciality of the designed neural network is the incorporation of the boundary condition directly in the CNN. A physics-informed CNN that uses a non-Cartesian mesh poses a challenge when evaluating partial derivatives. We propose a gradient layer that approximates the first and second partial derivatives by finite differences using Lagrange interpolation. Our analysis shows that the convergence of purely physics-informed training is slow. However, using a small training dataset in combination with physics-informed training can achieve results comparable to physics-uninformed training with a considerably larger training dataset.Keywords: Physics-informed neural networkconvolutional neural networkU-Netincompressible fluid flowfluid dynamics Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is supported by project GA21-31457S ‘Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems’ of the Grant Agency of the Czech Republic.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.