{"title":"基于用户需求的有监督机器学习购车预测","authors":"Mohd. Samee Uddin -, Rabab Fatima Hussain -, Asfiya Samreen -, Saleha Butool -","doi":"10.37082/ijirmps.v11.i1.230312","DOIUrl":null,"url":null,"abstract":"One of the key sectors of the national economy is the auto industry. Cars are becoming more and more common as a form of private transportation. When a buyer wants to purchase the ideal vehicle, particularly a car, an evaluation is necessary. Because it is an expensive vehicle, there are a lot of conditions and elements to consider before buying a new one, including price, headlamp, cylinder volume, and spare parts. Therefore, it is crucial for the consumer to choose a purchase that can meet all of the criteria before making any other decisions. In our research, we therefore suggest various well-known methods to improve accuracy for a car purchase. These algorithms were used on our dataset, which consists of 50 data. With a prediction accuracy of 86.7%, Support Vector Machine (SVM) produces the best result of the bunch. In this study, we also present comparison findings for all data samples using various methods for precision, recall, and F1 score.","PeriodicalId":246139,"journal":{"name":"International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Car Purchase based on User Demands using Supervised Machine Learning\",\"authors\":\"Mohd. Samee Uddin -, Rabab Fatima Hussain -, Asfiya Samreen -, Saleha Butool -\",\"doi\":\"10.37082/ijirmps.v11.i1.230312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key sectors of the national economy is the auto industry. Cars are becoming more and more common as a form of private transportation. When a buyer wants to purchase the ideal vehicle, particularly a car, an evaluation is necessary. Because it is an expensive vehicle, there are a lot of conditions and elements to consider before buying a new one, including price, headlamp, cylinder volume, and spare parts. Therefore, it is crucial for the consumer to choose a purchase that can meet all of the criteria before making any other decisions. In our research, we therefore suggest various well-known methods to improve accuracy for a car purchase. These algorithms were used on our dataset, which consists of 50 data. With a prediction accuracy of 86.7%, Support Vector Machine (SVM) produces the best result of the bunch. In this study, we also present comparison findings for all data samples using various methods for precision, recall, and F1 score.\",\"PeriodicalId\":246139,\"journal\":{\"name\":\"International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37082/ijirmps.v11.i1.230312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37082/ijirmps.v11.i1.230312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Car Purchase based on User Demands using Supervised Machine Learning
One of the key sectors of the national economy is the auto industry. Cars are becoming more and more common as a form of private transportation. When a buyer wants to purchase the ideal vehicle, particularly a car, an evaluation is necessary. Because it is an expensive vehicle, there are a lot of conditions and elements to consider before buying a new one, including price, headlamp, cylinder volume, and spare parts. Therefore, it is crucial for the consumer to choose a purchase that can meet all of the criteria before making any other decisions. In our research, we therefore suggest various well-known methods to improve accuracy for a car purchase. These algorithms were used on our dataset, which consists of 50 data. With a prediction accuracy of 86.7%, Support Vector Machine (SVM) produces the best result of the bunch. In this study, we also present comparison findings for all data samples using various methods for precision, recall, and F1 score.