{"title":"高分辨率遥感图像语义分割的多尺度级联网络","authors":"Xiaolu Zhang, Zhaoshun Wang, Anlei Wei","doi":"10.1080/07038992.2023.2255068","DOIUrl":null,"url":null,"abstract":"As remote sensing images have complex backgrounds and varying object sizes, their semantic segmentation is challenging. This study proposes a multiscale cascaded network (MSCNet) for semantic segmentation. The resolutions employed with respect to the input remote sensing images are 1, 1/2, and 1/4, which represent high, medium, and low resolutions. First, 3 backbone networks extract features with different resolutions. Then, using a multiscale attention network, the fused features are input into the dense atrous spatial pyramid pooling network to obtain multiscale information. The proposed MSCNet introduces multiscale feature extraction and attention mechanism modules suitable for remote sensing land-cover classification. Experiments are performed using the Deepglobe, Vaihingen, and Potsdam datasets; the results are compared with those of the existing classical semantic segmentation networks. The findings indicate that the mean intersection over union (mIoU) of the MSCNet is 4.73% higher than that of DeepLabv3+ with the Deepglobe datasets. For the Vaihingen datasets, the mIoU of the MSCNet is 15.3%, and 6.4% higher than those of a segmented network (SegNet), and DeepLabv3+, respectively. For the Potsdam datasets, the mIoU of the MSCNet is higher than those of a fully convolutional network, Res-U-Net, SegNet, and DeepLabv3+ by 11.18%, 5.89%, 4.78%, and 3.03%, respectively.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"45 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images\",\"authors\":\"Xiaolu Zhang, Zhaoshun Wang, Anlei Wei\",\"doi\":\"10.1080/07038992.2023.2255068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As remote sensing images have complex backgrounds and varying object sizes, their semantic segmentation is challenging. This study proposes a multiscale cascaded network (MSCNet) for semantic segmentation. The resolutions employed with respect to the input remote sensing images are 1, 1/2, and 1/4, which represent high, medium, and low resolutions. First, 3 backbone networks extract features with different resolutions. Then, using a multiscale attention network, the fused features are input into the dense atrous spatial pyramid pooling network to obtain multiscale information. The proposed MSCNet introduces multiscale feature extraction and attention mechanism modules suitable for remote sensing land-cover classification. Experiments are performed using the Deepglobe, Vaihingen, and Potsdam datasets; the results are compared with those of the existing classical semantic segmentation networks. The findings indicate that the mean intersection over union (mIoU) of the MSCNet is 4.73% higher than that of DeepLabv3+ with the Deepglobe datasets. For the Vaihingen datasets, the mIoU of the MSCNet is 15.3%, and 6.4% higher than those of a segmented network (SegNet), and DeepLabv3+, respectively. For the Potsdam datasets, the mIoU of the MSCNet is higher than those of a fully convolutional network, Res-U-Net, SegNet, and DeepLabv3+ by 11.18%, 5.89%, 4.78%, and 3.03%, respectively.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2023.2255068\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2255068","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
As remote sensing images have complex backgrounds and varying object sizes, their semantic segmentation is challenging. This study proposes a multiscale cascaded network (MSCNet) for semantic segmentation. The resolutions employed with respect to the input remote sensing images are 1, 1/2, and 1/4, which represent high, medium, and low resolutions. First, 3 backbone networks extract features with different resolutions. Then, using a multiscale attention network, the fused features are input into the dense atrous spatial pyramid pooling network to obtain multiscale information. The proposed MSCNet introduces multiscale feature extraction and attention mechanism modules suitable for remote sensing land-cover classification. Experiments are performed using the Deepglobe, Vaihingen, and Potsdam datasets; the results are compared with those of the existing classical semantic segmentation networks. The findings indicate that the mean intersection over union (mIoU) of the MSCNet is 4.73% higher than that of DeepLabv3+ with the Deepglobe datasets. For the Vaihingen datasets, the mIoU of the MSCNet is 15.3%, and 6.4% higher than those of a segmented network (SegNet), and DeepLabv3+, respectively. For the Potsdam datasets, the mIoU of the MSCNet is higher than those of a fully convolutional network, Res-U-Net, SegNet, and DeepLabv3+ by 11.18%, 5.89%, 4.78%, and 3.03%, respectively.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.